2023-2024學(xué)年四川省綿陽第五中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第1頁
2023-2024學(xué)年四川省綿陽第五中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第2頁
2023-2024學(xué)年四川省綿陽第五中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第3頁
2023-2024學(xué)年四川省綿陽第五中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第4頁
2023-2024學(xué)年四川省綿陽第五中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年四川省綿陽第五中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對2.如圖,中,弦相交于點,連接,若,,則()A. B. C. D.3.已知三角形的周長為12,面積為6,則該三角形內(nèi)切圓的半徑為()A.4 B.3 C.2 D.14.觀察下列四個圖形,中心對稱圖形是()A. B. C. D.5.如圖,l1∥l2∥l3,直線a,b與l1、l2、l3分別相交于A、B、C和點D、E、F.若,DE=4.2,則DF的長是()A. B.6 C.6.3 D.10.56.如圖,小明利用測角儀和旗桿的拉繩測量學(xué)校旗桿的高度.如圖,旗桿PA的高度與拉繩PB的長度相等.小明將PB拉到PB′的位置,測得∠PB′C=α(B′C為水平線),測角儀B′D的高度為1m,則旗桿PA的高度為()A.m B.m C.m D.m7.在直角坐標系中,點關(guān)于坐標原點的對稱點的坐標為()A. B. C. D.8.如圖,網(wǎng)格中的兩個三角形是位似圖形,它們的位似中心是()A.點A B.點B C.點C D.點D9.如圖,∠1=∠2,要使△ABC∽△ADE,只需要添加一個條件即可,這個條件不可能是()A.∠B=∠D B.∠C=∠E C. D.10.若二次函數(shù)y=-x2+px+q的圖像經(jīng)過A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),則y1、y2、y3的大小關(guān)系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1二、填空題(每小題3分,共24分)11.若<2,化簡_____________12.拋物線y=3x2向右平移1個單位,再向下平移2個單位,所得到的拋物線是____.13.某一建筑物的樓頂是“人”字型,并鋪上紅瓦裝飾.現(xiàn)知道樓頂?shù)钠露瘸^0.5時,瓦片會滑落下來.請你根據(jù)圖中數(shù)據(jù)判斷這一樓頂鋪設(shè)的瓦片是否會滑落下來?________.(填“會”或“不會”)14.如圖,⊙O是等邊△ABC的外接圓,弦CP交AB于點D,已知∠ADP=75°,則∠POB等于_______°.15.已知線段AB=4,點P是線段AB的黃金分割點,且AP<BP,那么AP的長為_____.16.如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動點,連接CF、EF,則CF+EF的最小值為_____.17.如圖,中,,以點為圓心的圓與相切,則的半徑為________.18.拋物線y=x2–6x+5的頂點坐標為__________.三、解答題(共66分)19.(10分)如圖1,在平面直角坐標系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.(1)求點P的坐標及直線AC的解析式;(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;(3)如圖3,點M為線段OA上一點,以O(shè)M為邊在第一象限內(nèi)作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當點M與點A重合時停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.20.(6分)某校開發(fā)了“書畫、器樂、戲曲、棋類”四大類興趣課程.為了解全校學(xué)生對每類課程的選擇情況,隨機抽取了若干名學(xué)生進行調(diào)查(每人必選且只能選一類),先將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:(1)本次隨機調(diào)查了多少名學(xué)生?(2)補全條形統(tǒng)計圖中“書畫”、“戲曲”的空缺部分;(3)若該校共有名學(xué)生,請估計全校學(xué)生選擇“戲曲”類的人數(shù);(4)學(xué)校從這四類課程中隨機抽取兩類參加“全市青少年才藝展示活動”,用樹形圖或列表法求處恰好抽到“器樂”和“戲曲”類的概率.(書畫、器樂、戲曲、棋類可分別用字幕表示)21.(6分)成都市某景區(qū)經(jīng)營一種新上市的紀念品,進價為20元/件,試營銷階段發(fā)現(xiàn);當銷售單價是30元時,每天的銷售量為200件;銷售單價每上漲2元,每天的銷售量就減少10件.這種紀念品的銷售單價為x(元).(1)試確定日銷售量y(臺)與銷售單價為x(元)之間的函數(shù)關(guān)系式;(2)若要求每天的銷售量不少于15件,且每件紀念品的利潤至少為30元,則當銷售單價定為多少時,該紀念品每天的銷售利潤最大,最大利潤為多少?22.(8分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行,某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.(1)求該型號自行車的進價和標價分別是多少元?(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出50輛;若每輛自行車每降價20元,每月可多售出5輛,求該型號自行車降價多少元時,每月可獲利30000元?23.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;(3)過點B作BC⊥x軸,垂足為C,求S△ABC.24.(8分)如圖,反比例函數(shù)的圖象與正比例函數(shù)的圖象交于點,且點的橫坐標為2.(1)求反比例函數(shù)的表達;(2)若射線上有點,,過點作與軸垂直,垂足為點,交反比例函數(shù)圖象于點,連接,,請求出的面積.25.(10分)非洲豬瘟疫情發(fā)生以來,豬肉市場供應(yīng)階段性偏緊和豬價大幅波動時有發(fā)生,為穩(wěn)定生豬生產(chǎn),促進轉(zhuǎn)型升級,增強豬肉供應(yīng)保障能力,國務(wù)院辦公廳于2019年9月印發(fā)了《關(guān)于穩(wěn)定生豬生產(chǎn)促進轉(zhuǎn)型升級的意見》,某生豬飼養(yǎng)場積極響應(yīng)國家號召,努力提高生產(chǎn)經(jīng)營管理水平,穩(wěn)步擴大養(yǎng)殖規(guī)模,增加豬肉供應(yīng)量。該飼養(yǎng)場2019年每月生豬產(chǎn)量y(噸)與月份x(,且x為整數(shù))之間的函數(shù)關(guān)系如圖所示.(1)請直接寫出當(x為整數(shù))和(x為整數(shù))時,y與x的函數(shù)關(guān)系式;(2)若該飼養(yǎng)場生豬利潤P(萬元/噸)與月份x(,且x為整數(shù))滿足關(guān)系式:,請問:該飼養(yǎng)場哪個月的利潤最大?最大利潤是多少?26.(10分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關(guān)系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.2、C【分析】根據(jù)圓周角定理可得,再由三角形外角性質(zhì)求出,解答即可.【詳解】解:∵,,∴又∵,,,故選:.【點睛】本題考查的是圓周角定理的應(yīng)用,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.3、D【分析】設(shè)內(nèi)切圓的半徑為r,根據(jù)公式:,列出方程即可求出該三角形內(nèi)切圓的半徑.【詳解】解:設(shè)內(nèi)切圓的半徑為r解得:r=1故選D.【點睛】此題考查的是根據(jù)三角形的周長和面積,求內(nèi)切圓的半徑,掌握公式:是解決此題的關(guān)鍵.4、C【分析】根據(jù)中心對稱圖形的定義即可判斷.【詳解】在平面內(nèi),若一個圖形可以繞某個點旋轉(zhuǎn)180°后能與自身重合,那么這個圖形叫做中心對稱圖形,根據(jù)定義可知,C選項中的圖形是中心對稱圖形.故答案選:C.【點睛】本題考查的知識點是中心對稱圖形,解題的關(guān)鍵是熟練的掌握中心對稱圖形.5、D【分析】根據(jù)平行線分線段成比例定理得出,再把已知條件代入求解即可.【詳解】解:∵l1∥l2∥l3,,DE=4.2,∴,即,解得:EF=6.3,∴DF=DE+EF=10.1.故選:D.【點睛】本題考查平行線分線段成比例定理.熟練掌握平行線分線段成比例定理是解題關(guān)鍵.6、A【解析】設(shè)PA=PB=PB′=x,在RT△PCB′中,根據(jù)sinα=,列出方程即可解決問題.【詳解】設(shè)PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x-1=xsinα,∴(1-sinα)x=1,∴x=.故選A.【點睛】本題考查解直角三角形、三角函數(shù)等知識,解題的關(guān)鍵是設(shè)未知數(shù)列方程,屬于中考常考題型.7、D【分析】根據(jù)關(guān)于原點對稱的點的坐標特征:橫、縱坐標都相反,進行判斷即可.【詳解】點A(-1,2)關(guān)于原點的對稱點的坐標為(1,-2).故選:D.【點睛】本題考查點的坐標特征,熟記特殊點的坐標特征是關(guān)鍵.8、D【分析】利用對應(yīng)點的連線都經(jīng)過同一點進行判斷.【詳解】如圖,位似中心為點D.故選D.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.注意:兩個圖形必須是相似形;對應(yīng)點的連線都經(jīng)過同一點;對應(yīng)邊平行.9、D【分析】先求出∠DAE=∠BAC,再根據(jù)相似三角形的判定方法分析判斷即可.【詳解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用兩角法:有兩組角對應(yīng)相等的兩個三角形相似可得△ABC∽△ADE,故此選項不合題意;B、添加∠C=∠E可利用兩角法:有兩組角對應(yīng)相等的兩個三角形相似可得△ABC∽△ADE,故此選項不合題意;C、添加可利用兩邊及其夾角法:兩組邊對應(yīng)成比例且夾角相等的兩個三角形相似,故此選項不合題意;D、添加不能證明△ABC∽△ADE,故此選項符合題意;故選:D.【點睛】本題考查相似三角形的判定,解題的關(guān)鍵是掌握相似三角形判定方法:兩角法、兩邊及其夾角法、三邊法、平行線法.10、A【分析】利用A點與C點為拋物線上的對稱點得到對稱軸為直線x=2,然后根據(jù)點B、D、E離對稱軸的遠近求解.【詳解】∵二次函數(shù)y=-x2+px+q的圖像經(jīng)過A(,n)、C(,n),

∴拋物線開口向下,對稱軸為直線,∵點D(,y2)的橫坐標:,離對稱軸距離為,點E(,y3)的橫坐標:,離對稱軸距離為,∴B(0,y1)離對稱軸最近,點E離對稱軸最遠,∴y3<y2<y1.

故選:A.【點睛】本題考查了二次函數(shù)函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標特征滿足其解析式,根據(jù)拋物線上的對稱點坐標得到對稱軸是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、2-x.【分析】直接利用二次根式的性質(zhì)化簡求出答案.【詳解】解:∵x<2,∴x-2<0,故答案是:2-x.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確把握二次根式的性質(zhì)是解題關(guān)鍵.12、y=3(x﹣1)2﹣2【分析】根據(jù)圖象向下平移減,向右平移減,即可得答案.【詳解】拋物線y=3x2向右平移1個單位,再向下平移2個單位,所得到的拋物線是y=3(x-1)2-2,故答案為y=3(x-1)2-2.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.13、不會【分析】根據(jù)斜坡的坡度的定義,求出坡度,即可得到答案.【詳解】∵?ABC是等腰三角形,AB=AC=13m,AH⊥BC,∴CH=BC=12m,∴AH=m,∴樓頂?shù)钠露?,∴這一樓頂鋪設(shè)的瓦片不會滑落下來.故答案是:不會.【點睛】本題主要考查斜坡坡度的定義,掌握坡度的定義,是解題的關(guān)鍵.14、90【分析】先根據(jù)等邊三角形的的性質(zhì)和三角形的外角性質(zhì)求出∠ACP,進而求得可得∠BCP,最后根據(jù)圓周角定理∠BOP=2∠BCP=90°.【詳解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案為90.【點睛】此題主要考查了等邊三角形的的性質(zhì),三角形外角的性質(zhì),以及圓周角定理,關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.15、(6﹣2)cm.【解析】根據(jù)黃金分割點的定義和AP<BP得出PB=AB,代入數(shù)據(jù)即可得出BP的長度.【詳解】解:由于P為線段AB=4的黃金分割點,且AP<BP,則BP=×4=(2

-2)cm.∴AP=4-BP=故答案為:()cm.【點評】本題考查了黃金分割.應(yīng)該識記黃金分割的公式:較短的線段=原線段的,較長的線段=原線段的

.16、【分析】作BM⊥AC于M,交AD于F,根據(jù)三線合一定理求出BD的長和AD⊥BC,根據(jù)三角形面積公式求出BM,根據(jù)對稱性質(zhì)求出BF=CF,根據(jù)垂線段最短得出CF+EF≥BM,即可得出答案.【詳解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC邊上的中線,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C關(guān)于AD對稱,∴BF=CF,根據(jù)垂線段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案為:.【點睛】本題考查了軸對稱?最短路線問題,關(guān)鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.17、【解析】試題解析:在△ABC中,∵AB=5,BC=3,AC=4,如圖:設(shè)切點為D,連接CD,∵AB是C的切線,∴CD⊥AB,∴AC?BC=AB?CD,即∴的半徑為故答案為:點睛:如果三角形兩條邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形.18、(3,-4)【解析】分析:利用配方法得出二次函數(shù)頂點式形式,即可得出二次函數(shù)頂點坐標.詳解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴拋物線頂點坐標為(3,﹣4).故答案為(3,﹣4).點睛:此題考查了二次函數(shù)的性質(zhì),求拋物線的頂點坐標可以先配方化為頂點式,也可以利用頂點坐標公式()來找拋物線的頂點坐標.三、解答題(共66分)19、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值為﹣3或,理由見解析【分析】(1)由拋物線y=x2+x+3可求出點C,P,A的坐標,再用待定系數(shù)法,可求出直線AC的解析式;(2)在OC上取點H(0,),連接HF,AH,求出AH的長度,證△HOF∽△FOC,推出HF=CF,由AF+CF=AF+HF≥AH,即可求解;(3)先求出正方形的邊長,通過△ARM∽△ACO將相關(guān)線段用含t的代數(shù)式表示出來,再分三種情況進行討論:當∠O'RP=90°時,當∠PO'R=90°時,當∠O'PR=90°時,分別構(gòu)造相似三角形,即可求出t的值,其中第三種情況不存在,舍去.【詳解】(1)在拋物線y=x2+x+3中,當x=0時,y=3,∴C(0,3),當y=3時,x1=0,x2=2,∴P(2,3),當y=0時,則x2+x+3=0,解得:x1=﹣4,x2=6,B(﹣4,0),A(6,0),設(shè)直線AC的解析式為y=kx+3,將A(6,0)代入,得,k=﹣,∴y=﹣x+3,∴點P坐標為P(2,3),直線AC的解析式為y=﹣x+3;(2)在OC上取點H(0,),連接HF,AH,則OH=,AH=,∵,,且∠HOF=∠FOC,∴△HOF∽△FOC,∴,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值為;(3)∵正方形OMNG的頂點N恰好落在線段AC上,∴GN=MN,∴設(shè)N(a,a),將點N代入直線AC解析式,得,a=﹣a+3,∴a=2,∴正方形OMNG的邊長是2,∵平移的距離為t,∴平移后OM的長為t+2,∴AM=6﹣(t+2)=4﹣t,∵RM∥OC,∴△ARM∽△ACO,∴,即,∴RM=2﹣t,如圖3﹣1,當∠O'RP=90°時,延長RN交CP的延長線于Q,∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,∴∠PRQ=∠RO'M,又∵∠Q=∠O'MR=90°,∴△PQR∽△RMO',∴,∵PQ=2+t-2=t,QR=3﹣RM=1+t,∴,解得,t1=﹣3﹣(舍去),t2=﹣3;如圖3﹣2,當∠PO'R=90°時,∵∠PO'E+∠RO'M=90°,∠PO'E+∠EPO'=90°,∴∠RO'M=∠EPO',又∵∠PEO'=∠O'MR=90°,∴△PEO'∽△O'MR,∴,即,解得,t=;如圖3﹣3,當∠O'PR=90°時,延長O’G交CP于K,延長MN交CP的延長線于點T,∵∠KPO'+∠TPR=90°,∠KO'P+∠KPO'=90°,∴∠KO'P=∠TPR,又∵∠O'KP=∠T=90°,∴△KO'P∽△TPR,∴,即,整理,得t2-t+3=0,∵△=b2﹣4ac=﹣<0,∴此方程無解,故不存在∠O'PR=90°的情況;綜上所述,△O′PR為直角三角形時,t的值為﹣3或.【點睛】本題主要考查二次函數(shù)的圖象和相似三角形的綜合,添加合適的輔助線,構(gòu)造相似三角形,是解題的關(guān)鍵.20、(1)(人);(2)詳見解析;(3)【解析】(1)由器樂的人數(shù)及其所占百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以書畫對應(yīng)百分比求得其人數(shù),再根據(jù)各類型人數(shù)之和等于總?cè)藬?shù)求得戲曲人數(shù),從而補全圖形;(3)利用樣本估計總體思想求解可得;(4)列表或樹狀圖將所有等可能的結(jié)果列舉出來后利用概率公式求解即可.【詳解】解:(1)本次隨機調(diào)查的學(xué)生人數(shù)為(人);(2)書畫的人數(shù)為(人),戲曲的人數(shù)為(人),補全圖形如下:(3)估計全校學(xué)生選擇“戲曲”類的人數(shù)約為(人);(4)列表得:∵共有種等可能的結(jié)果,其中恰好抽到“器樂”和“戲曲”類的有2種結(jié)果,∴恰好抽到“器樂”和“戲曲”類的概率為【點睛】本題考查的是用列表法或畫樹狀圖法求概率的知識.解題關(guān)鍵在于注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1);(2)當銷售單價定為50元時,該紀念品每天的銷售利潤最大,最大利潤為3000元.【分析】(1)利用“實際銷售量=原銷售量-10×”可得日銷售量y(臺)與銷售單價為x(元)之間的函數(shù)關(guān)系式;(2))設(shè)每天的銷售利潤為w元,按照每件的利潤乘以實際銷量可得w與x之間的函數(shù)關(guān)系式,根據(jù)每天的銷售量不少于15件,且每件紀念品的利潤至少為30元求出x的取值范圍,利用二次函數(shù)的性質(zhì)可得答案;【詳解】(1);(2)設(shè)每天的銷售利潤為w元.則,∵,∴,∵且對稱軸為:直線,∴拋物線開口向下,在對稱軸的右側(cè),w隨著x的增大而減小,∴當時,w取最大值為3000元.答:當銷售單價定為50元時,該紀念品每天的銷售利潤最大,最大利潤為3000元.【點睛】本題考查了一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用,以及一元一次不等式組的應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.22、(1)該型號自行車的進價為1000元,標價為1元;(2)該型號自行車降價100元或2元時,每月可獲利30000元.【分析】(1)設(shè)該型號自行車的進價為x元,則標價為(1+50%)x元,根據(jù)利潤=售價﹣進價結(jié)合按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;(2)設(shè)該型號自行車降價y元,則平均每月可售出(50+y)輛,根據(jù)總利潤=每輛的利潤×銷售數(shù)量,即可得出關(guān)于y的一元二次方程,解之即可得出結(jié)論.【詳解】解:(1)設(shè)該型號自行車的進價為x元,則標價為(1+50%)x元,依題意,得:8×[0.9×(1+50%)x﹣x]=7×[(1+50%)x﹣100﹣x],解得:x=1000,∴(1+50%)x=1.答:該型號自行車的進價為1000元,標價為1元.(2)設(shè)該型號自行車降價y元,則平均每月可售出(50+y)輛,依題意,得:(1﹣1000﹣y)(50+y)=30000,整理,得:y2﹣300y+200=0,解得:y1=100,y2=2.答:該型號自行車降價100元或2元時,每月可獲利30000元.【點睛】本題考查了一元一次方程的應(yīng)用以及一元二次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出一元一次方程;(2)找準等量關(guān)系,正確列出一元二次方程.23、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根據(jù)點A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點B坐標代入反比例函數(shù)解析式,求出n的值,進而求出一次函數(shù)解析式(2)根據(jù)點A和點B的坐標及圖象特點,即可求出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.24、(1)y=(x>0);(2)△OAB的面積為2.【分析】(1)將A點的橫坐標代入正比例函數(shù),可求出A點坐標,再將A點坐標代入反比例函數(shù)求出k,即可得解析式;(2)過A點作AN⊥OM,垂足為點N,則AN∥PM,根據(jù)平行線分線段成比例得,進而求出M點坐標,將M點的橫坐標分別代入反比例函數(shù)和正比例函數(shù),求出B、P的坐標,再利用三角形面積公式求出△POM、△BOM的面積,作差得到△BOP的面積,最后根據(jù)S△OAB∶S△BAP=OA∶AP=1∶2即可求解.【詳解】解:(1)A點在正比例函數(shù)y=x的圖象上,當x=2時,y=3,∴點A的坐標為(2,3)將(2,3)代入反比例函數(shù)解析式y(tǒng)=(x>0),得,解得k=1.∴反比例函數(shù)的表達式為y=(x>0)(2)如圖,過A點作AN⊥OM,垂足為點N,則AN∥PM,∴.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1∴M點的坐標為(1,0)將x=1代入y=,得y==1,∴點B的坐標為(1,1)將x=1代入y=x,得y==9,∴點P的坐標為(1,9).∴S△POM=×1×9=27,S△BOM=×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=×24=2答:△OAB的面積為2.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的綜合問題,以及平行線分線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論