版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年江蘇省無錫市錫北片數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.某水庫大壩高米,背水壩的坡度為,則背水面的坡長為()A.40米 B.60米 C.米 D.米2.如圖,是圓內(nèi)接四邊形的一條對角線,點關(guān)于的對稱點在邊上,連接.若,則的度數(shù)為()A.106° B.116° C.126° D.136°3.如圖,經(jīng)過原點的⊙與軸分別交于兩點,點是劣弧上一點,則()A.是銳角 B.是直角 C.是鈍角 D.大小無法確定4.在△ABC中,∠A、∠B都是銳角,且,則關(guān)于△ABC的形狀的說法錯誤的是()A.它不是直角三角形 B.它是鈍角三角形C.它是銳角三角形 D.它是等腰三角形5.如圖,中,,在同一平面內(nèi),將繞點旋轉(zhuǎn)到的位置,使得,則旋轉(zhuǎn)角等于()A. B. C. D.6.下列各點中,在反比例函數(shù)圖象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)7.如圖所示幾何體的俯視圖是()A. B. C. D.8.如圖,關(guān)于拋物線,下列說法錯誤的是()A.頂點坐標(biāo)為(1,)B.對稱軸是直線x=lC.開口方向向上D.當(dāng)x>1時,y隨x的增大而減小9.已知點都在雙曲線上,且,則的取值范圍是()A. B. C. D.10.若拋物線y=kx2﹣2x﹣1與x軸有兩個不同的交點,則k的取值范圍為()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0二、填空題(每小題3分,共24分)11.如圖,分別為矩形的邊,的中點,若矩形與矩形相似,則相似比等于__________.12.如圖,點B是反比例函數(shù)上一點,矩形OABC的周長是20,正方形BCGH和正方形OCDF的面積之和為68,則反比例函數(shù)的解析式是_____.13.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.14.如圖,在四邊形中,,,,.若,則______.15.方程(x+1)(x﹣2)=5化成一般形式是_____.16.若方程(a-3)x|a|-1+2x-8=0是關(guān)于x的一元二次方程,則a的值是_____.17.一個三角形的三邊之比為,與它相似的三角形的周長為,則與它相似的三角形的最長邊為____________.18.一組正方形按如圖所示的方式放置,其中頂點在軸上,頂點,,,,,,在軸上,已知正方形的邊長為,,則正方形的邊長為__________________.三、解答題(共66分)19.(10分)如圖,在中,點在邊上,點在邊上,且,.(1)求證:∽;(2)若,,求的長.20.(6分)如圖,在中,,.(1)在邊上求作一點,使得.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,求證:為線段的黃金分割點.21.(6分)元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.(1)求甲、乙兩種蘋果的進價分別是每千克多少元?(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.22.(8分)我們把對角線互相垂直的四邊形叫做垂直四邊形.(1)如圖1,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂直四邊形嗎?請說明理由;(2)如圖2,四邊形ABCD是垂直四邊形,求證:AD2+BC2=AB2+CD2;(3)如圖3,Rt△ABC中,∠ACB=90°,分別以AC、AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,BC=3,求GE長.23.(8分)如圖,點P是上一動點,連接AP,作∠APC=45°,交弦AB于點C.AB=6cm.小元根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對線段AP,PC,AC的長度進行了測量.下面是小元的探究過程,請補充完整:(1)下表是點P是上的不同位置,畫圖、測量,得到線段AP,PC,AC長度的幾組值,如下表:AP/cm01.002.003.004.005.006.00PC/cm01.212.092.69m2.820AC/cm00.871.572.202.833.616.00①經(jīng)測量m的值是(保留一位小數(shù)).②在AP,PC,AC的長度這三個量中,確定的長度是自變量,的長度和的長度都是這個自變量的函數(shù);(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)圖象;(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△ACP為等腰三角形時,AP的長度約為cm(保留一位小數(shù)).24.(8分)如圖,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如圖1,當(dāng)α=90°時,∠AMD的度數(shù)為°(2)如圖2,當(dāng)α=60°時,∠AMD的度數(shù)為°(3)如圖3,當(dāng)△OCD繞O點任意旋轉(zhuǎn)時,∠AMD與α是否存在著確定的數(shù)量關(guān)系?如果存在,請你用表示∠AMD,并圖3進行證明;若不確定,說明理由.25.(10分)如圖,已知是的一條弦,請用尺規(guī)作圖法找出的中點.(保留作圖痕跡,不寫作法)26.(10分)如圖,二次函數(shù)y=ax2+bx﹣3的圖象與x軸交于A、B與y軸交于點C,頂點坐標(biāo)為(1,﹣4)(1)求二次函數(shù)解析式;(2)該二次函數(shù)圖象上是否存在點M,使S△MAB=S△CAB,若存在,求出點M的坐標(biāo).
參考答案一、選擇題(每小題3分,共30分)1、A【解析】坡面的垂直高度h和水平寬度l的比叫做坡度(或坡比),我們把斜坡面與水平面的夾角叫做坡角,若用α表示,可知坡度與坡角的關(guān)系式,tanα(坡度)=垂直距離÷水平距離,根據(jù)公式可得水平距離,依據(jù)勾股定理可得問題的答案.【詳解】∵大壩高20米,背水壩的坡度為1:,
∴水平距離=20×=20米.
根據(jù)勾股定理可得背水面的坡長為40米.
故選A.【點睛】本題考查解直角三角形的應(yīng)用-坡度、坡角的有關(guān)知識,熟悉且會靈活應(yīng)用坡度公式是解此題的關(guān)鍵.2、B【解析】根據(jù)圓的內(nèi)接四邊形對角互補,得出∠D的度數(shù),再由軸對稱的性質(zhì)得出∠AEC的度數(shù)即可.【詳解】解:∵四邊形ABCD是圓的內(nèi)接四邊形,∴∠D=180°-∠ABC=180°-64°=116°,∵點D關(guān)于的對稱點在邊上,∴∠D=∠AEC=116°,故答案為B.【點睛】本題考查了圓的內(nèi)接四邊形的性質(zhì)及軸對稱的性質(zhì),解題的關(guān)鍵是熟知圓的內(nèi)接四邊形對角互補及軸對稱性質(zhì).3、B【分析】根據(jù)圓周角定理的推論即可得出答案.【詳解】∵和對應(yīng)著同一段弧,∴,∴是直角.故選:B.【點睛】本題主要考查圓周角定理的推論,掌握圓周角定理的推論是解題的關(guān)鍵.4、C【解析】先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°?∠A?∠B=180?30°?30°=120°.故選C.【點睛】本題主要考查特殊角三角函數(shù)值,熟悉掌握是關(guān)鍵.5、B【分析】由平行線的性質(zhì)得出,由旋轉(zhuǎn)的性質(zhì)可知,則有,然后利用三角形內(nèi)角和定理即可求出旋轉(zhuǎn)角的度數(shù).【詳解】由旋轉(zhuǎn)的性質(zhì)可知所以旋轉(zhuǎn)角等于40°故選:B.【點睛】本題主要考查平行線的性質(zhì),等腰三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),掌握旋轉(zhuǎn)角的概念及平行線的性質(zhì),等腰三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.6、A【分析】根據(jù)反比例函數(shù)的性質(zhì)可得:反比例函數(shù)圖像上的點滿足xy=3.【詳解】解:A、∵3×1=3,∴此點在反比例函數(shù)的圖象上,故A正確;
B、∵(-3)×1=-3≠3,∴此點不在反比例函數(shù)的圖象上,故B錯誤;C、∵,∴此點不在反比例函數(shù)的圖象上,故C錯誤;D、∵,∴此點不在反比例函數(shù)的圖象上,故D錯誤;故選A.7、B【解析】注意幾何體的特征,主視圖與左視圖的高相同,主視圖與俯視圖的長相等,左視圖與俯視圖的寬相同.再對選項進行分析即可得到答案.【詳解】根據(jù)俯視圖的特征,應(yīng)選B.故選:B.【點睛】本題考查了幾何體的三視圖,正確理解主視圖與左視圖以及俯視圖的特征是解題的關(guān)鍵.8、D【分析】根據(jù)拋物線的解析式得出頂點坐標(biāo)是(1,-2),對稱軸是直線x=1,根據(jù)a=1>0,得出開口向上,當(dāng)x>1時,y隨x的增大而增大,根據(jù)結(jié)論即可判斷選項.【詳解】解:∵拋物線y=(x-1)2-2,A、因為頂點坐標(biāo)是(1,-2),故說法正確;B、因為對稱軸是直線x=1,故說法正確;C、因為a=1>0,開口向上,故說法正確;D、當(dāng)x>1時,y隨x的增大而增大,故說法錯誤.故選D.9、D【分析】分別將A,B兩點代入雙曲線解析式,表示出和,然后根據(jù)列出不等式,求出m的取值范圍.【詳解】解:將A(-1,y1),B(2,y2)兩點分別代入雙曲線,得,,∵y1>y2,,解得,故選:D.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,解不等式.反比例函數(shù)圖象上的點的坐標(biāo)滿足函數(shù)解析式.10、C【分析】根據(jù)拋物線y=kx2﹣2x﹣1與x軸有兩個不同的交點,得出b2﹣4ac>0,進而求出k的取值范圍.【詳解】∵二次函數(shù)y=kx2﹣2x﹣1的圖象與x軸有兩個交點,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵拋物線y=kx2﹣2x﹣1為二次函數(shù),∴k≠0,則k的取值范圍為k>﹣1且k≠0,故選C.【點睛】本題考查了二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷,熟練掌握拋物線與x軸交點的個數(shù)與b2-4ac的關(guān)系是解題的關(guān)鍵.注意二次項系數(shù)不等于0.二、填空題(每小題3分,共24分)11、(或)【分析】根據(jù)矩形的性質(zhì)可得EF=AB=CD,AE=AD=BC,根據(jù)相似的性質(zhì)列出比例式,即可得出,從而求出相似比.【詳解】解:∵分別為矩形的邊,的中點,∴EF=AB=CD,AE=AD=BC,∵矩形與矩形相似∴∴∴∴相似比=(或)故答案為:(或).【點睛】此題考查的是求相似多邊形的相似比,掌握相似多邊形的性質(zhì)是解決此題的關(guān)鍵.12、y=.【詳解】解:設(shè)矩形OABC的兩邊分別為,b則+b=10,2+b2=68∵(+b)2=2+b2+2∴2=(+b)2-(2+b2)=32∴=16∴反比例函數(shù)的解析式是【點睛】本題考查①矩形、正方形面積公式;②完全平方公式;③反比例函數(shù)面積有關(guān)的問題.此種試題,相對復(fù)雜,需要學(xué)生掌握矩形、正方形面積公式,并利用完全平方公式和反比例函數(shù)相關(guān)的問題.13、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標(biāo),進而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點D的坐標(biāo)為(0,?3),∴OD的長為3,設(shè)y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.14、【分析】首先在△ABC中,根據(jù)三角函數(shù)值計算出AC的長,然后根據(jù)正切定義可算出.【詳解】∵,,∴,∵AB=2,∴AC=6,∵AC⊥CD,∴,∴故答案為:.【點睛】本題考查了解直角三角形,熟練掌握正弦,正切的定義是解題的關(guān)鍵.15、x2﹣x﹣7=1.【分析】一元二次方程,b,c是常數(shù)且的a、b、c分別是二次項系數(shù)、一次項系數(shù)、常數(shù)項.【詳解】解:方程(x+1)(x﹣2)=5化成一般形式是x2﹣x﹣7=1,故答案為:x2﹣x﹣7=1.【點睛】本題考查了一元二次方程的一般形式:,b,c是常數(shù)且a≠1)特別要注意a≠1的條件.這是在做題過程中容易忽視的知識點.在一般形式中叫二次項,bx叫一次項,是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.16、-3【分析】根據(jù)一元二次方程的定義列方程求出a的值即可.【詳解】∵方程(a-3)x|a|-1+2x-8=0是關(guān)于x的一元二次方程,∴-1=2,且a-3≠0,解得:a=-3,故答案為:-3【點睛】本題考查一元二次方程的定義,只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程;一般形式為ax2+bx+c=0(a≠0),熟練掌握定義是解題關(guān)鍵,注意a≠0的隱含條件,不要漏解.17、18cm.【分析】由一個三角形的三邊之比為3:6:4,可得與它相似的三角形的三邊之比為3:6:4,又由與它相似的三角形的周長為39cm,即可求得答案.【詳解】解:∵一個三角形的三邊之比為3:6:4,∴與它相似的三角形的三邊之比為3:6:4,∵與它相似的三角形的周長為39cm,∴與它相似的三角形的最長邊為:39×=18(cm).
故答案為:18cm.【點睛】此題考查了相似三角形的性質(zhì).此題比較簡單,注意相似三角形的對應(yīng)邊成比例.18、【分析】由正方形的邊長為,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根據(jù)三角函數(shù)的定義和正方形的性質(zhì),即可得到答案.【詳解】∵正方形的邊長為,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此類推:正方形的邊長為:,∴正方形的邊長為:.故答案是:.【點睛】本題主要考查正方形的性質(zhì)和三角函數(shù)的定義綜合,掌握用三角函數(shù)的定義解直角三角形,是解題的關(guān)鍵.三、解答題(共66分)19、(1)證明見解析;(1)AB=1.【分析】(1)由題意根據(jù)相似三角形的判定定理即可證明∽;(1)根據(jù)題意利用相似三角形的相似比,即可分析求解.【詳解】解:(1)證明:∵,.∴.∵∴,∵為公共角,∴∽.(1)∵∽∴∴∴(-1舍去)∴.【點睛】本題主要考查相似三角形的判定和性質(zhì),能夠證得∽是解答此題的關(guān)鍵.20、(1)見解析;(2)證明見解析.【分析】(1)利用等腰三角形的性質(zhì)及AA定理,做AB的垂直平分線或∠ABC的角平分線都可,(2)利用相似三角形的性質(zhì)得到,然后根據(jù)黃金分割的定義得到結(jié)論.【詳解】解:(1)作法一:如圖1.點為所求作的點.作法二:如圖2.點為所求作的點.(2)證明:∵,∴.根據(jù)(1)的作圖方法,得.∴.∴點為線段的黃金分割點.【點睛】本題考查等腰三角形的性質(zhì),相似三角形的判定和性質(zhì)及尺規(guī)作圖,黃金分割的定義,掌握相關(guān)性質(zhì)定理是本題的解題關(guān)鍵.21、(1)甲、乙兩種蘋果的進價分別為10元/千克,8元/千克;(2)的值為2或7.【分析】(1)根據(jù)題意列二元一次方程組即可求解,(2)根據(jù)題意列一元二次方程即可求解.【詳解】(1)解:設(shè)甲、乙兩種蘋果的進價分別為元/千克,元/千克.由題得:解之得:答:甲、乙兩種蘋果的進價分別為10元/千克,8元/千克(2)由題意得:解之得:,經(jīng)檢驗,,均符合題意答:的值為2或7.【點睛】本題考查了二元一次方程組和一元二次方程的實際應(yīng)用,中等難度,列方程是解題關(guān)鍵.22、(1)四邊形ABCD是垂直四邊形;理由見解析;(2)見解析;(3)GE=【分析】(1)由AB=AD,得出點A在線段BD的垂直平分線上,由CB=CD,得出點C在線段BD的垂直平分線上,則直線AC是線段BD的垂直平分線,即可得出結(jié)果;(2)設(shè)AC、BD交于點E,由AC⊥BD,得出∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,即可得出結(jié)論;(3)連接CG、BE,由正方形的性質(zhì)得出AG=AC,AB=AE,,,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS證得△GAB≌△CAE,得出∠ABG=∠AEC,推出∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,得出四邊形CGEB是垂直四邊形,由(2)得,CG2+BE2=BC2+GE2,,,代入計算即可得出結(jié)果.【詳解】(1)解:四邊形ABCD是垂直四邊形;理由如下:∵AB=AD,∴點A在線段BD的垂直平分線上,∵CB=CD,∴點C在線段BD的垂直平分線上,∴直線AC是線段BD的垂直平分線,∴AC⊥BD,即四邊形ABCD是垂直四邊形;(2)證明:設(shè)AC、BD交于點E,如圖2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:連接CG、BE,如圖3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,,,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四邊形CGEB是垂直四邊形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴,,∴,∴GE=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)、勾股定理、垂直平分線、垂直四邊形、全等三角形的判定與性質(zhì)等知識;熟練掌握正方形的性質(zhì),證明三角形全等是解題的關(guān)鍵.23、(1)①3.0;②AP的長度是自變量,PC的長度和AC的長度都是這個自變量的函數(shù);(答案不唯一);(2)見解析;(3)2.3或4.2【分析】(1)①根據(jù)題意AC的值分析得出PC的值接近于半徑;②由題意AP的長度是自變量,分析函數(shù)值即可;(2)利用描點法畫出函數(shù)圖像即可;(3)利用數(shù)形結(jié)合的思想解決問題即可.【詳解】解:(1)①AC=2.83可知PC接近于半徑3.0;②AP的長度是自變量,PC的長度和AC的長度都是這個自變量的函數(shù);(答案不唯一)(2)如圖(答案不唯一,和(1)問相對應(yīng));(3)結(jié)合圖像根據(jù)AP=PC以及AC=PC進行代入分析可得AP為2.3或4.2【點睛】本題考查函數(shù)圖像的相關(guān)性質(zhì),利用描點法畫出函數(shù)圖像以及利用數(shù)形結(jié)合的思想進行分析求解.24、(1)1;(2)2;(3)∠AMD=180°﹣α,證明詳見解析.【解析】(1)如圖1中,設(shè)OA交BD于K.只要證明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=1°;(2)如圖2中,設(shè)OA交BD于K.只要證明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=2°;(3)如圖3中,設(shè)OA交BD于K.只要證明△BOD≌△AOC,可得∠OBD=∠OAC,由∠AKO=∠BKM,推出∠AOK=∠BMK=α.可得∠AMD=180°-α.【詳解】(1)如圖1中,設(shè)OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=1°.故答案為1.(2)如圖2中,設(shè)OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=2°.故答案為2.(3)如圖3中,設(shè)OA交BD于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年心理咨詢師題庫及參考答案
- 2025年度水電安裝與設(shè)備供應(yīng)一體化承包合同模板4篇
- 2024陸運貨物運輸合同
- 針對二零二五年度韻達快遞業(yè)務(wù)承包的專項合同3篇
- 學(xué)校招生政策解讀
- 獎學(xué)金評審與評定過程
- 2024年09月江蘇蘇州銀行張家港支行招考(119)號筆試歷年參考題庫附帶答案詳解
- 2024年09月2024江西銀行校園招聘150人筆試歷年參考題庫附帶答案詳解
- 2024年09月2024中國建設(shè)銀行廣西區(qū)分行校園招聘360人筆試歷年參考題庫附帶答案詳解
- 2024年08月江蘇昆山農(nóng)村商業(yè)銀行招考20名小微客戶經(jīng)理筆試歷年參考題庫附帶答案詳解
- 金蓉顆粒-臨床用藥解讀
- 社區(qū)健康服務(wù)與管理教案
- 2023-2024年家政服務(wù)員職業(yè)技能培訓(xùn)考試題庫(含答案)
- 2023年(中級)電工職業(yè)技能鑒定考試題庫(必刷500題)
- 藏歷新年文化活動的工作方案
- 果酒釀造完整
- 第4章-理想氣體的熱力過程
- 生涯發(fā)展展示
- 法治副校長專題培訓(xùn)課件
- 手術(shù)室應(yīng)對突發(fā)事件、批量傷員應(yīng)急預(yù)案及處理流程
- 動機-行為背后的原因課件
評論
0/150
提交評論