版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省寧德市普通高中2024屆數(shù)學高三上期末達標測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,輸出的結果為()A. B. C. D.3.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.4.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1805.若為虛數(shù)單位,則復數(shù),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若集合,,則()A. B. C. D.7.的展開式中的一次項系數(shù)為()A. B. C. D.8.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種9.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.10.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.11.函數(shù)在的圖象大致為()A. B.C. D.12.如果直線與圓相交,則點與圓C的位置關系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內 D.上述三種情況都有可能二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.14.已知向量,,,則_________.15.已知函數(shù)有兩個極值點、,則的取值范圍為_________.16.四面體中,底面,,,則四面體的外接球的表面積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一酒企為擴大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內發(fā)酵館,發(fā)酵館內有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結合現(xiàn)有的生產(chǎn)規(guī)模,設定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設計,可使得發(fā)酵館占地面積最小.18.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.19.(12分)在本題中,我們把具體如下性質的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).20.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.21.(12分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.22.(10分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.2、D【解析】
由程序框圖確定程序功能后可得出結論.【詳解】執(zhí)行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結論,也可以由程序框圖確定程序功能,然后求解.3、D【解析】
根據(jù)已知條件和等比數(shù)列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎題.4、D【解析】
求的展開式中的常數(shù)項,可轉化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.5、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎題.6、A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.7、B【解析】
根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.8、B【解析】
把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.9、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.10、A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.11、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.12、B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導數(shù)法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.14、2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標運算,向量垂直的性質,向量的模的計算.15、【解析】
確定函數(shù)的定義域,求導函數(shù),利用極值的定義,建立方程,結合韋達定理,即可求的取值范圍.【詳解】函數(shù)的定義域為,,依題意,方程有兩個不等的正根、(其中),則,由韋達定理得,,所以,令,則,,當時,,則函數(shù)在上單調遞減,則,所以,函數(shù)在上單調遞減,所以,.因此,的取值范圍是.故答案為:.【點睛】本題考查了函數(shù)極值點問題,考查了函數(shù)的單調性、最值,將的取值范圍轉化為以為自變量的函數(shù)的值域問題是解答的關鍵,考查計算能力,屬于中等題.16、【解析】
由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,,米時,發(fā)酵館的占地面積最?。划敃r,時,發(fā)酵館的占地面積最??;當時,米時,發(fā)酵館的占地面積最小.【解析】
(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設米,則米,由題意知:,得,設總費用為,則,解得:,又,故,所以發(fā)酵池邊長的范圍是不小于15米,且不超過25米;(2)設發(fā)酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發(fā)酵館的占地面積最??;②時,,在上遞減,則,即米時,發(fā)酵館的占地面積最??;③時,時,,遞減;時,遞增,因此,即時,發(fā)酵館的占地面積最小;綜上所述:當時,,米時,發(fā)酵館的占地面積最?。划敃r,時,發(fā)酵館的占地面積最?。划敃r,米時,發(fā)酵館的占地面積最小.【點睛】此題考查函數(shù)模型的應用,關鍵在于根據(jù)題意恰當?shù)亟⒛P停煤瘮?shù)性質討論最值取得的情況.18、(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【解析】
(1)求出導函數(shù),并且解出它的零點x=,再分區(qū)間討論導數(shù)的正負,即可得到函數(shù)f(x)的單調區(qū)間;
(2)分三種情況加以討論,結合函數(shù)的單調性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因為,令,可得;
當時,;當時,,綜上所述:可知函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為當,即時,函數(shù)在區(qū)間上是減函數(shù),
的最小值是當,即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當,即時,函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當時,的最小值是;
當時,的最小值為綜上所述,結論為當時,函數(shù)的最小值是;
當時,函數(shù)的最小值是.【點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解方程求出函數(shù)定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小19、(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調,建立方程求解;(2)依據(jù)新定義,討論的單調性,列出方程求解即可。【詳解】(1)當時,由復合函數(shù)單調性知,在區(qū)間上是增函數(shù),即有,解得;同理,當時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調函數(shù),①當在上是單調增函數(shù),則,解得,檢驗符合;②當在上是單調減函數(shù),則,解得,在上不是單調函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有。【點睛】本題主要考查學生的應用意識,利用所學知識分析解決新定義問題。20、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數(shù)分別為,,從而,則.【點睛】本題考查了極坐標方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道容易題.21、(1)(2)證明見解析【解析】
(1)求導,可得(1),(1),結合已知切線方程即可求得,的值;(2)利用導數(shù)可得,,再構造新函數(shù),利用導數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域為,,則(1),(1),故曲線在點,(1)處的切線方程為,又曲線在點,(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調遞減,又,(1),故存在,使得,且當時,,單調遞增,當,時,,單調遞減,由于,(1),(2),故存在,使得,且當時,,,單調遞增,當,時,,,單調遞減,故函數(shù)存在唯一的極大值點,且,即,則,令,則,故在上單調遞增,由于,故(2),即,.【點睛】本題考查導數(shù)的幾何意義以及利用導數(shù)研究函數(shù)的單調性,極值及最值,考查推理論證能力,屬于中檔題.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機場航站樓鋼結構施工合同范本
- 金屬加工設備租賃協(xié)議
- 人力資源成本分攤方案
- 教育用地租賃解除通知
- 五常法在供應鏈管理中的應用
- 信息技術溝通規(guī)范
- 港口碼頭場平施工合同
- 船舶專用泵房工程合同
- 造紙機械融資租賃合同
- 危化品倉庫防雷設施建設
- 四川省成都市2023-2024學年高二上學期期末考試+地理 含答案
- 幼兒心理健康的教育課件
- 人教版數(shù)學六年級上冊期末考試試卷
- 2024年時事政治試題庫附答案(綜合題)
- 新人教版八年級上冊數(shù)學知識點歸納及??碱}型
- DB43T 1167-2016 高純(SiO ≥99.997%)石英砂 規(guī)范
- 電池制造工(電池(組)裝配工)行業(yè)職業(yè)技能競賽理論考試題庫及答案
- 四年級數(shù)學上冊 第6章《除法》單元測評必刷卷(北師大版)
- 部編版語文小學三年級上學期期末試卷與參考答案(2024年)
- 《環(huán)境保護產(chǎn)品技術要求 工業(yè)廢氣吸附凈化裝置》HJT 386-2007
- 化工過程安全管理導則學習考試題及答案
評論
0/150
提交評論