2023年山東省青州市數(shù)學九上期末質(zhì)量檢測試題含解析_第1頁
2023年山東省青州市數(shù)學九上期末質(zhì)量檢測試題含解析_第2頁
2023年山東省青州市數(shù)學九上期末質(zhì)量檢測試題含解析_第3頁
2023年山東省青州市數(shù)學九上期末質(zhì)量檢測試題含解析_第4頁
2023年山東省青州市數(shù)學九上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年山東省青州市數(shù)學九上期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.從一定高度拋一個瓶蓋100次,落地后蓋面朝下的有55次,則下列說法中錯誤的是A.蓋面朝下的頻數(shù)是55B.蓋面朝下的頻率是0.55C.蓋面朝下的概率不一定是0.55D.同樣的試驗做200次,落地后蓋面朝下的有110次2.從某多邊形的一個頂點出發(fā),可以作條對角線,則這個多邊形的內(nèi)角和與外角和分別是()A.; B.; C.; D.;3.如圖,點()是反比例函數(shù)上的動點,過分別作軸,軸的垂線,垂足分別為,.隨著的增大,四邊形的面積()A.增大 B.減小 C.不確定 D.不變4.如圖,已知直線,直線、與、、分別交于點、、和、、,,,,()A.7 B.7.5 C.8 D.4.55.如圖,⊙O的弦AB=16,OM⊥AB于M,且OM=6,則⊙O的半徑等于A.8 B.6 C.10 D.206.已知二次函數(shù)y=ax2+bx+c(a≠0),當x=1時,函數(shù)y有最大值,設(x1,y1),(x2,y2)是這個函數(shù)圖象上的兩點,且1<x1<x2,那么()A.a(chǎn)>0,y1>y2B.a(chǎn)>0,y1<y2C.a(chǎn)<0,y1>y2D.a(chǎn)<0,y1<y27.如果關于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且8.一塊蓄電池的電壓為定值,使用此蓄電池為電源時,電流I(A)與電阻R(Ω)之間的函數(shù)關系如圖所示,如果以此蓄電池為電源的用電器限制電流不得超過10A,那么此用電器的可變電阻應(

)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω9.已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是()A.1 B.7 C.1或7 D.無法確定10.如圖,一只箱子沿著斜面向上運動,箱高AB=1.3cm,當BC=2.6m時,點B離地面的距離BE=1m,則此時點A離地面的距離是()A.2.2m B.2m C.1.8m D.1.6m二、填空題(每小題3分,共24分)11.如圖,已知四邊形ABCD是菱形,BC∥x軸,點B的坐標是(1,),坐標原點O是AB的中點.動圓⊙P的半徑是,圓心在x軸上移動,若⊙P在運動過程中只與菱形ABCD的一邊相切,則點P的橫坐標m的取值范圍是_________.12.如圖,在中,,若,則__________.13.已知點E是線段AB的黃金分割點,且,若AB=2則BE=__________.14.已知中,,的面積為1.(1)如圖,若點分別是邊的中點,則四邊形的面積是__________.(2)如圖,若圖中所有的三角形均相似,其中最小的三角形面積為1,則四邊形的面積是___________.15.將拋物線y=x2﹣2x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為____________________________16.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為_____.17.已知點A(a,1)與點A′(5,b)是關于原點對稱,則a+b=________.18.如圖,已知⊙O上三點A,B,C,半徑OC=,∠ABC=30°,切線PA交OC延長線于點P,則PA的長為____.三、解答題(共66分)19.(10分)如圖,中,頂點的坐標是,軸,交軸于點,頂點的縱坐標是,的面積是.反比例函數(shù)的圖象經(jīng)過點和,求反比例函數(shù)的表達式.20.(6分)如圖,在平面直角坐標系xOy中,二次函數(shù)的圖象與軸,軸的交點分別為和.(1)求此二次函數(shù)的表達式;(2)結(jié)合函數(shù)圖象,直接寫出當時,的取值范圍.21.(6分)如圖,在平面直角坐標系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=且經(jīng)過A,C兩點,與x軸的另一交點為點B.(1)求拋物線解析式.(2)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.22.(8分)解方程:(1)x2﹣2x+1=0(2)2x2﹣3x+1=023.(8分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同.(1)攪勻后從袋子中任意摸出1個球,摸到紅球的概率是多少?(2)攪勻后先從袋子中任意摸出1個球,記錄顏色后不放回,再從袋子中任意摸出1個球,用畫樹狀圖或列表的方法列出所有等可能的結(jié)果,并求出兩次都摸到白球的概率.24.(8分)如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當水面寬為12m時,橋洞頂部離水面4m.、(1)建立平面直角坐標系,并求該拋物線的函數(shù)表達式;(2)若水面上升1m,水面寬度將減少多少?25.(10分)為積極響應新舊動能轉(zhuǎn)換.提高公司經(jīng)濟效益.某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺售價為40萬元時,年銷售量為600臺;每臺售價為45萬元時,年銷售量為550臺.假定該設備的年銷售量y(單位:臺)和銷售單價(單位:萬元)成一次函數(shù)關系.(1)求年銷售量與銷售單價的函數(shù)關系式;(2)根據(jù)相關規(guī)定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?26.(10分)如圖①拋物線y=ax2+bx+4(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(4,0),點C三點.(1)試求拋物線的解析式;(2)點D(3,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;(3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)頻數(shù),頻率及用頻率估計概率即可得到答案.【詳解】A、蓋面朝下的頻數(shù)是55,此項正確;B、蓋面朝下的頻率是=0.55,此項正確;C、蓋面朝下的概率接近于0.55,但不一定是0.55,此項正確;D、同樣的試驗做200次,落地后蓋面朝下的在110次附近,不一定必須有110次,此項錯誤;故選:D.【點睛】本題考查了頻數(shù),頻率及用頻率估計概率,掌握知識點是解題關鍵.2、A【分析】根據(jù)邊形從一個頂點出發(fā)可引出條對角線,求出的值,再根據(jù)邊形的內(nèi)角和為,代入公式就可以求出內(nèi)角和,根據(jù)多邊形的外角和等于360,即可求解.【詳解】∵多邊形從一個頂點出發(fā)可引出4條對角線,

∴,

解得:,

∴內(nèi)角和;任何多邊形的外角和都等于360.故選:A.【點睛】本題考查了多邊形的對角線,多邊形的內(nèi)角和及外角和定理,是需要熟記的內(nèi)容,比較簡單.求出多邊形的邊數(shù)是解題的關鍵.3、D【分析】由長方形的面積公式可得出四邊形的面積為mn,再根據(jù)點Q在反比例函數(shù)圖象上,可知,從而可判斷面積的變化情況.【詳解】∵點∴四邊形的面積為,∵點()是反比例函數(shù)上的動點∴四邊形的面積為定值,不會發(fā)生改變故選:D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)的幾何意義,掌握反比例函數(shù)比例系數(shù)的幾何意義是解題的關鍵.4、D【分析】根據(jù)平行線分線段成比例定理,列出比例式解答即可.【詳解】∵∴即:故選:D【點睛】本題考查的是平行線分線段成比例定理,掌握定理的內(nèi)容并能正確的列出比例式是關鍵.5、C【分析】連接OA,即可證得△OMA是直角三角形,根據(jù)垂徑定理即可求得AM,根據(jù)勾股定理即可求得OA的長,即⊙O的半徑.【詳解】連接OA,∵M是AB的中點,∴OM⊥AB,且AM=8,在Rt△OAM中,OA===1.故選C.【點睛】本題主要考查了垂徑定理,以及勾股定理,根據(jù)垂徑定理求得AM的長,證明△OAM是直角三角形是解題的關鍵.6、C【解析】由當x=2時,函數(shù)y有最大值,根據(jù)拋物線的性質(zhì)得a<0,拋物線的對稱軸為直線x=2,當x>2時,y隨x的增大而減小,所以由2<x2<x2得到y(tǒng)2>y2.【詳解】∵當x=2時,函數(shù)y有最大值,∴a<0,拋物線的對稱軸為直線x=2.∵2<x2<x2,∴y2>y2.故選C.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上的點滿足其解析式.也考查了二次函數(shù)的性質(zhì).7、B【分析】在與一元二次方程有關的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有兩個實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關系是解題的關鍵.8、A【分析】先由圖象過點(1,6),求出U的值.再由蓄電池為電源的用電器限制電流不得超過10A,求出用電器的可變電阻的取值范圍.【詳解】解:由物理知識可知:I=UR,其中過點(1,6),故U=41,當I≤10時,由R≥4.1故選A.【點睛】本題考查反比例函數(shù)的圖象特點:反比例函數(shù)y=kx的圖象是雙曲線,當k>0時,它的兩個分支分別位于第一、三象限;當k<09、C【分析】由于弦AB、CD的具體位置不能確定,故應分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖①,過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②當弦AB和CD在圓心異側(cè)時,如圖②,過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,EF=OF+OE=1,所以AB與CD之間的距離是1或1.故選:C.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了勾股定理及分類討論的思想的應用.10、A【分析】先根據(jù)勾股定理求出CE,再利用相似三角形的判定與性質(zhì)進而求出DF、AF的長即可得出AD的長.【詳解】解:由題意可得:AD∥EB,則∠CFD=∠AFB=∠CBE,△CDF∽△CEB,∵∠ABF=∠CEB=90°,∠AFB=∠CBE,∴△CBE∽△AFB,∴==,∵BC=2.6m,BE=1m,∴EC=2.4(m),即==,解得:FB=,AF=,∵△CDF∽△CEB,∴=,即解得:DF=,故AD=AF+DF=+=2.2(m),答:此時點A離地面的距離為2.2m.故選:A.【點睛】本題考查了勾股定理、相似三角形的判定和性質(zhì),利用勾股定理,正確利用相似三角形的性質(zhì)得出FD的長是解題的關鍵.二、填空題(每小題3分,共24分)11、或或或【分析】若⊙P在運動過程中只與菱形ABCD的一邊相切,則需要對此過程分四種情況討論,根據(jù)已知條件計算出m的取值范圍即可.【詳解】解:由B點坐標(1,),及原點O是AB的中點可知AB=2,直線AB與x軸的夾角為60°,又∵四邊形ABCD是菱形,∴AD=AB=BC=CD=2,設DC與x軸相交于點H,則OH=4,(1)當⊙P與DC邊相切于點E時,連接PE,如圖所示,由題意可知PE=,PE⊥DC,∠PHE=60°,∴PH=2,∴此時點P坐標為(-6,0),所以此時.(2)當⊙P只與AD邊相切時,如下圖,∵PD=,∴PH=1,∴此時,當⊙P繼續(xù)向右運動,同時與AD,BC相切時,PH=1,所以此時,∴當時,⊙P只與AD相切;,(3)當⊙P只與BC邊相切時,如下圖,⊙P與AD相切于點A時,OP=1,此時m=-1,⊙P與AD相切于點B時,OP=1,此時m=1,∴當,⊙P只與BC邊相切時;,(4)當⊙P只與BC邊相切時,如下圖,由題意可得OP=2,∴此時.綜上所述,點P的橫坐標m的取值范圍或或或.【點睛】本題考查圓與直線的位置關系,加上動點問題,此題難度較大,解決此題的關鍵是能夠正確分類討論,并根據(jù)已知條件進行計算求解.12、6【分析】先根據(jù)平行四邊形的性質(zhì)證得△BEG∽△FAG,從而可得相似比,然后根據(jù)同高的兩個三角形的面積等于底邊之比可求得,根據(jù)相似三角形的性質(zhì)可求得,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案為:6.【點睛】本題考查了平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì)以及三角形的面積等知識,屬于??碱}型,熟練掌握平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)是解答的關鍵.13、【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值叫做黃金比;【詳解】解:∵點E是線段AB的黃金分割點,且BE>AE,∴BE=AB,而AB=2,∴BE=;故答案為:;【點睛】本題主要考查了黃金分割,掌握黃金分割是解題的關鍵.14、31.5;26【分析】(1)證得△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方及△ABC的面積為1,求得△ADE的面積,用大三角形的面積減去小三角形的面積,即可得答案;(2)利用△AFH∽△ADE得到,設,,則,解得,從而得到,然后計算兩個三角形的面積差得到四邊形DBCE的面積.【詳解】(1)∵點D、E分別是邊AB、AC的中點,

∴DE∥BC,

∴△ADE∽△ABC,

∵點D、E分別是邊AB、AC的中點,

∴,∴,

∵,

∴,

∴;(2)如圖,

根據(jù)題意得,∴,設,,∴,解得,∴,∴.

【點睛】本題考查了相似三角形的判定和性質(zhì):有兩組角對應相等的兩個三角形相似.利用相似三角形的面積比等于相似比的平方是解題的關鍵.15、或【分析】根據(jù)函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.【詳解】解:將y=x1-1x+3化為頂點式,得:y=(x-1)1+1.將拋物線y=x1-1x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案為:或.【點睛】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.16、【解析】根據(jù)圓周角定理的推論及切線長定理,即可得出答案解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠ACB=60°,∴∠BAC=30°,∴CB=1,AB=,∵AP為切線,∴∠CAP=90°,∴∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴△PAB的周長為3.點睛:本題主要考查圓周角定理及切線長定理.熟記圓的相關性質(zhì)是解題的關鍵.17、-1【解析】試題分析:根據(jù)關于原點對稱的兩點的橫縱坐標分別互為相反數(shù)可知a=-5,b=-1,所以a+b=(-5)+(-1)=-1,故答案為-1.18、1【分析】連接OA,根據(jù)圓周角定理求出∠AOP,根據(jù)切線的性質(zhì)求出∠OAP=90°,解直角三角形求出AP即可.【詳解】連接OA,∵∠ABC=10°,∴∠AOC=2∠ABC=60°,∵切線PA交OC延長線于點P,∴∠OAP=90°,∵OA=OC=,∴AP=OAtan60°=×=1.故答案為:1.【點睛】本題考查了圓的切線問題,掌握圓周角定理、圓的切線性質(zhì)是解題的關鍵.三、解答題(共66分)19、.【解析】根據(jù)題意得出AE=6,結(jié)合平行四邊形的面積得出AD=BC=4,繼而知點D坐標,從而得出反比例函數(shù)解析式;【詳解】解:頂點的坐標是,頂點的縱坐標是,,又的面積是,,則,反比例函數(shù)解析式為.【點睛】本題主要考查待定系數(shù)法求反比例函數(shù)解析式,解題的關鍵是掌握平行四邊形的面積公式及待定系數(shù)法求反比例函數(shù)的能力.20、(1);(2)或.【分析】(1)把已知的兩點代入解析式即可求出二次函數(shù)的解析式;(2)由拋物線的對稱性與圖形即可得出時的取值范圍.【詳解】解:(1)∵拋物線與軸、軸的交點分別為和,∴.解得:.∴拋物線的表達式為:.(2)二次函數(shù)圖像如下,由圖像可知,當時,的取值范圍是或.【點睛】此題主要考察二次函數(shù)的應用.21、(1)拋物線的解析式為;(2)拋物線存在點M,點M的坐標或或或【分析】(1)根據(jù)自變量與函數(shù)值的對應關系,可得A、C點坐標,根據(jù)函數(shù)值相等的兩點關于對稱軸對稱,可得B點坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分兩種情形分別求解即可解決問題;【詳解】解:(1)當x=0時,y=2,即C(0,2),當y=0時,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B關于對稱軸對稱,得B(1,0).將A、B、C點坐標代入函數(shù)解析式,得,解得,拋物線的解析式為y=﹣x2﹣x+2;(2)①當點M在x軸上方時,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,如圖,設M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,當△ANM∽△ACB時,∠CAB=∠MAN,此時點M與點C重合,M(0,2).當△ANM∽△BCA時,∠MAN=∠ABC,此時M與C關于拋物線的對稱軸對稱,M(﹣3,2).②當點M在x軸下方時,當△ANM∽△ACB時,∠CAB=∠MAN,此時直線AM的解析式為y=﹣x﹣2,由,解得或,∴M(2,﹣3),當△ANM′∽△BCA時,∠MAN=∠ABC,此時AM′∥BC,∴直線AM′的解析式為y=﹣2x﹣8,由,解得或,∴M(5,﹣18)綜上所述:拋物線存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,點M的坐標(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【點睛】本題主要考查了二次函數(shù)的綜合,準確計算是解題的關鍵.22、(1)x1=x2=1;(2)x1=1,x2=【分析】(1)利用配方法解一元二次方程即可得出答案;(2)利用十字相乘法解一元二次方程即可得出答案.【詳解】解:(1)x2﹣2x+1=0(x-1)2=0∴x1=x2=1(2)2x2﹣3x+1=0(2x-1)(x-1)=0∴x1=1,x2=【點睛】本題考查的是解一元二次方程,解一元二次方程主要有以下幾種解法:直接開方法、配方法、公式法和因式分解法.23、(1);(2),見解析【分析】(1)袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,摸到紅球的概率即可求出;(2)分別使用樹狀圖法或列表法將抽取球的結(jié)果表示出來,第一次共有3種不同的抽取情況,第二次有2種不同的抽取情況,所有等可能出現(xiàn)的結(jié)果有6種,找出兩次都是白球的的抽取結(jié)果,即可算出概率.【詳解】解:(1)∵袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,∴;(2)畫樹狀圖,根據(jù)題意,畫樹狀圖結(jié)果如下:一共有6種等可能出現(xiàn)的結(jié)果,兩次都抽取到白球的次數(shù)為2次,∴;用列表法,根據(jù)題意,列表結(jié)果如下:一共有6種等可能出現(xiàn)的結(jié)果,兩次都抽取到白球的次數(shù)為2次,∴.【點睛】本題考查了列表法或樹狀圖法求概率,用圖表的形式將第一次、第二次抽取所可能發(fā)生的情況一一列出,避免遺漏.24、(1)圖見解析,拋物線的函數(shù)表達式為(注:因建立的平面直角坐標系的不同而不同);(2)【分析】(1)以AB的中點為平面直角坐標系的原點O,AB所在線為x軸,過點O作AB的垂線為y軸建立平面直角坐標系(圖見解析);因此,拋物線的頂點坐標為,可設拋物線的函數(shù)表達式為,再將B點的坐標代入即可求解;(2)根據(jù)題(1)的結(jié)果,令求出x的兩個值,從而可得水面上升1m后的水面寬度,再與12m作差即可得出答案.【詳解】(1)以AB的中點為平面直角坐標系的原點O,AB所在線為x軸,過點O作AB的垂線為y軸,建立的平面直角坐標系如下:根據(jù)所建立的平面直角坐標系可知,B點的坐標為,拋物線的頂點坐標為因此設拋物線的函數(shù)表達式為將代入得:解得:則所求的拋物線的函數(shù)表達式為(注:因建立的平面直角坐標系的不同而不同);(2)由題意,令得解得:則水面上升1m后的水面寬度為:(米)故水面上升1m,水面寬度將減少米.【點睛】本題考查了二次函數(shù)圖象的性質(zhì),根據(jù)建立的平面直角坐標系求出函數(shù)的表達式是解題關鍵.25、(1);(2)該公可若想獲得10萬元的年利潤,此設備的銷售單價應是3萬元.【解析】分析:(1)根據(jù)點的坐標,利用待定系數(shù)法即可求出年銷售量y與銷售單價x的函數(shù)關系式;(2)設此設備的銷售單價為x萬元/臺,則每臺設備的利潤為(x﹣30)萬元,銷售數(shù)量為(﹣10x+1)臺,根據(jù)總利潤=單臺利潤×銷售數(shù)量,即可得出關于x的一元二次方程,解之取其小于70的值即可得出結(jié)論.詳解:(1)設年銷售量y與銷售單價x的函數(shù)關系式為y=kx+b(k≠0),將(40,600)、(45,53)代入y=kx+b,得:,解得:,∴年銷售量y與銷售單價x的函數(shù)關系式為y=﹣10x+1.(2)設此設備的銷售單價為x萬元/臺,則每臺設備的利潤為(x﹣30)萬元,銷售數(shù)量為(﹣10x+1)臺,根據(jù)題意得:(x﹣30)(﹣10x+1)=10,整理,得:x2﹣130x+4000=0,解得:x1=3,x2=2.∵此設備的銷售單價不得高于70萬元,∴x=3.答:該設備的銷售單價應是3萬元/臺.點睛:本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論