版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省凌源市聯(lián)合校2024屆高三上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.3.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.4.已知命題,且是的必要不充分條件,則實數(shù)的取值范圍為()A. B. C. D.5.設(shè)全集集合,則()A. B. C. D.6.數(shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要7.在中,為中點,且,若,則()A. B. C. D.8.若復數(shù)滿足,則()A. B. C. D.9.已知是虛數(shù)單位,則()A. B. C. D.10.已知全集,集合,則()A. B. C. D.11.命題“”的否定為()A. B.C. D.12.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,復數(shù)且(為虛數(shù)單位),則__________,_________.14.《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.15.平面向量,,(R),且與的夾角等于與的夾角,則.16.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)中,內(nèi)角的對邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.18.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.19.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質(zhì),積極開展冰上體育鍛煉.現(xiàn)從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構(gòu)對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯(lián)表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)20.(12分)已知中,角所對邊的長分別為,且(1)求角的大小;(2)求的值.21.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.22.(10分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設(shè)與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.3、A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).4、D【解析】
求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實數(shù)的取值范圍為.故選:.【點睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關(guān)系,然后根據(jù)集合之間關(guān)系列出關(guān)于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時,一定要注意區(qū)間端點值的檢驗.5、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.6、A【解析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.7、B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.8、C【解析】
化簡得到,,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.9、B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.10、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.11、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎(chǔ)題.12、B【解析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵復數(shù)且∴∴∴∴,故答案為,14、【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當且僅當AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時考查了空間想象能力、計算能力和邏輯推理能力,屬于中檔題.15、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角16、【解析】
設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.18、(1)(2)【解析】
(1)由已知條件列出關(guān)于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設(shè)出點和點坐標,運用點坐標計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當直線垂直于軸時,,且此時,,當直線不垂直于軸時,設(shè)直線由,得.,.要使恒成立,只需,即最小值為【點睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運用根與系數(shù)的關(guān)系轉(zhuǎn)化為只含一個變量的表達式進行求解,需要掌握解題方法,并且有一定的計算量.19、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數(shù)為.完善列聯(lián)表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系.【點睛】本小題主要考查根據(jù)頻率分布直方圖計算小長方形的高,考查列聯(lián)表獨立性檢驗,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)正弦定理的邊角轉(zhuǎn)換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構(gòu)造齊次式,利用正弦定理的邊角轉(zhuǎn)換,得到,結(jié)合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因為得∵∴.(2)∵又由余弦定理,得∴【點睛】1.考查學生對正余弦定理的綜合應(yīng)用;2.能處理基本的邊角轉(zhuǎn)換問題;3.能利用特殊的三角函數(shù)值推特殊角,屬于中檔題21、(1);(2)【解析】
(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項公式,進而求出的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求數(shù)列的前項和.【詳解】解:(1),,是首項為,公比為的等比數(shù)列.所以,.(2).【點睛】本題考查了由數(shù)列的遞推公式求通項公式,錯位相減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標準測量技術(shù)服務(wù)合同模板版B版
- 2024年度新能源汽車核心部件代加工與貼牌生產(chǎn)合作協(xié)議3篇
- 協(xié)議公證離婚協(xié)議書
- 廣州一模學生答題情況分析(古詩文閱讀)
- 點對點通信課程設(shè)計
- 機械課程設(shè)計指導記錄
- 混凝土課程設(shè)計剛度要求
- 快樂的中秋節(jié)日記15篇
- 拒絕校園欺凌倡議書(9篇)
- 智能小車課程設(shè)計物聯(lián)網(wǎng)
- 2023年全國職業(yè)院校技能大賽賽項-ZZ019 智能財稅基本技能賽題 - 模塊二
- 心理危機干預(yù)服務(wù)
- 天津市河北區(qū)2023年七年級上冊《生物》期末試卷與參考答案
- 江蘇省徐州市重點中學高三第四次模擬考試新高考英語試卷及答案解析
- 廣西壯族自治區(qū)桂林市2023-2024學年七年級下學期期末考試數(shù)學試題
- 2024年二級建造師繼續(xù)教育題庫及答案(500題)
- 2024國家安全員資格考試題庫(含答案)
- 《航空工程材料》教學大綱
- 物聯(lián)網(wǎng)綜合測試題和答案全
- MOOC 制造技術(shù)基礎(chǔ)訓練-北京理工大學 中國大學慕課答案
- MOOC 英語話中華-山東大學 中國大學慕課答案
評論
0/150
提交評論