青海省西寧市第二十一中學2024屆高三數(shù)學第一學期期末考試模擬試題含解析_第1頁
青海省西寧市第二十一中學2024屆高三數(shù)學第一學期期末考試模擬試題含解析_第2頁
青海省西寧市第二十一中學2024屆高三數(shù)學第一學期期末考試模擬試題含解析_第3頁
青海省西寧市第二十一中學2024屆高三數(shù)學第一學期期末考試模擬試題含解析_第4頁
青海省西寧市第二十一中學2024屆高三數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

青海省西寧市第二十一中學2024屆高三數(shù)學第一學期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.2.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.3.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.4.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值5.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.6.已知(i為虛數(shù)單位,),則ab等于()A.2 B.-2 C. D.7.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.8.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.9.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.10.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.11.設集合,,則().A. B.C. D.12.關于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.14.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.15.在中,為定長,,若的面積的最大值為,則邊的長為____________.16.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應是:_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.18.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)經(jīng)過點且斜率存在的直線交橢圓于兩點,點與點關于坐標原點對稱.連接.求證:存在實數(shù),使得成立.19.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學期望.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.21.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點且,,,.求證:平面平面以;求二面角的大小.22.(10分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實根,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。2、C【解析】

設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.3、C【解析】

先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.4、C【解析】

采用逐一驗證法,根據(jù)線線、線面之間的關系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.5、D【解析】

根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結(jié)果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.6、A【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.7、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.8、A【解析】

根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關鍵是求出基本事件的個數(shù).9、A【解析】

根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關系式,求解可得,屬于較難題.10、C【解析】

先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.11、D【解析】

根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,12、C【解析】

先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想.14、2【解析】

由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎題.15、【解析】

設,以為原點,為軸建系,則,,設,,,利用求向量模的公式,可得,根據(jù)三角形面積公式進一步求出的值即為所求.【詳解】解:設,以為原點,為軸建系,則,,設,,則,即,由,可得.則.故答案為:.【點睛】本題考查向量模的計算,建系是關鍵,屬于難題.16、1【解析】

根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學生的計算能力和理解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標,設平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設,則,又因為,所以.所以.設平面的法向量為,則,即,令,則.于是.又因為,設直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.18、(1)(2)證明見解析【解析】

(1)由點可得,由,根據(jù)即可求解;(2)設直線的方程為,聯(lián)立可得,設,由韋達定理可得,再根據(jù)直線的斜率公式求得;由點B與點Q關于原點對稱,可設,可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設直線的方程為,聯(lián)立,可得,設,則有,因為,所以,又因為點B與點Q關于原點對稱,所以,即,則有,由點在橢圓上,得,所以,所以,即,所以存在實數(shù),使成立【點睛】本題考查橢圓的標準方程,考查直線的斜率公式的應用,考查運算能力.19、(1)(2)9060元【解析】

(1)根據(jù)古典概型概率公式和組合數(shù)的計算可得所求概率;(2)任選一天,設該天的經(jīng)濟損失為元,分別求出,,,進而求得數(shù)學期望,據(jù)此得出該企業(yè)一個月經(jīng)濟損失的數(shù)學期望.【詳解】解:(1)設為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則.(2)任選一天,設該天的經(jīng)濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個月的經(jīng)濟損失的數(shù)學期望為(元).【點睛】本題考查古典概型概率公式和組合數(shù)的計算及數(shù)學期望,屬于基礎題.20、(1):;:.(2)【解析】

(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為.(2)由(1)得,的普通方程為,將其化為極坐標方程可得,當時,,,所以.21、證明見解析;.【解析】

推導出,,從而平面,由此證明平面平面以;以為原點,建立空間直角坐標系,利用法向量求出二面角的大小.【詳解】解:,,為的中點,四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點,.平面平面,且平面平面,平面.如圖,以為原點建立空間直角坐標系,則平面的一個法向量為,,,,,設,則,,,,,在平面中,,,設平面的法向量為,則,即,平面的一個法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論