提優(yōu)題型六 幾何最值(專題訓(xùn)練)(解析版)_第1頁
提優(yōu)題型六 幾何最值(專題訓(xùn)練)(解析版)_第2頁
提優(yōu)題型六 幾何最值(專題訓(xùn)練)(解析版)_第3頁
提優(yōu)題型六 幾何最值(專題訓(xùn)練)(解析版)_第4頁
提優(yōu)題型六 幾何最值(專題訓(xùn)練)(解析版)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

題型六幾何最值(專題訓(xùn)練)1.如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點E,D是線段BE上的一個動點,則的最小值是()【答案】B【詳解】如圖,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,設(shè)AE=a,BE=2a,則有:100=a2+4a2,∴a2=20,∴a=2或-2(舍棄),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形兩腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值為4.故選B.2.如圖,在中,,,,點O是AB的三等分點,半圓O與AC相切,M,N分別是BC與半圓弧上的動點,則MN的最小值和最大值之和是()A.5 B.6 C.7 D.8【答案】B【詳解】如圖,設(shè)⊙O與AC相切于點D,連接OD,作垂足為P交⊙O于F,此時垂線段OP最短,PF最小值為,∵,,∴∵,∴∵點O是AB的三等分點,∴,,∴,∵⊙O與AC相切于點D,∴,∴,∴,∴,∴MN最小值為,如圖,當(dāng)N在AB邊上時,M與B重合時,MN經(jīng)過圓心,經(jīng)過圓心的弦最長,MN最大值,,∴MN長的最大值與最小值的和是6.故選B.3.如圖,在矩形紙片ABCD中,,,點E是AB的中點,點F是AD邊上的一個動點,將沿EF所在直線翻折,得到,則的長的最小值是A. B.3 C. D.【答案】D【詳解】以點E為圓心,AE長度為半徑作圓,連接CE,當(dāng)點在線段CE上時,的長取最小值,如圖所示,根據(jù)折疊可知:.在中,,,,,的最小值.故選D.4.如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G為對角線BD(不含B點)上任意一點,將△ABG繞點B逆時針旋轉(zhuǎn)60°得到△EBF,當(dāng)AG+BG+CG取最小值時EF的長()A. B. C. D.【答案】D【詳解】解:如圖,∵將△ABG繞點B逆時針旋轉(zhuǎn)60°得到△EBF,∴BE=AB=BC,BF=BG,EF=AG,∴△BFG是等邊三角形.∴BF=BG=FG,.∴AG+BG+CG=FE+GF+CG.根據(jù)“兩點之間線段最短”,∴當(dāng)G點位于BD與CE的交點處時,AG+BG+CG的值最小,即等于EC的長,過E點作EF⊥BC交CB的延長線于F,∴∠EBF=180°-120°=60°,∵BC=4,∴BF=2,EF=2,在Rt△EFC中,∵EF2+FC2=EC2,∴EC=4.∵∠CBE=120°,∴∠BEF=30°,∵∠EBF=∠ABG=30°,∴EF=BF=FG,∴EF=CE=,故選:D.5.如圖,中,,,,是內(nèi)部的一個動點,且滿足,則線段長的最小值為________.【答案】2:【詳解】∵∠PAB+∠PBA=90°∴∠APB=90°∴點P在以AB為直徑的弧上(P在△ABC內(nèi))設(shè)以AB為直徑的圓心為點O,如圖接OC,交☉O于點P,此時的PC最短∵AB=6,∴OB=3∵BC=4∴∴PC=5-3=26.如圖,正方形ABCD的邊長為4,E為BC上一點,且BE=1,F(xiàn)為AB邊上的一個動點,連接EF,以EF為邊向右側(cè)作等邊△EFG,連接CG,則CG的最小值為.【分析】同樣是作等邊三角形,區(qū)別于上一題求動點路徑長,本題是求CG最小值,可以將F點看成是由點B向點A運動,由此作出G點軌跡:考慮到F點軌跡是線段,故G點軌跡也是線段,取起點和終點即可確定線段位置,初始時刻G點在位置,最終G點在位置(不一定在CD邊),即為G點運動軌跡.CG最小值即當(dāng)CG⊥的時候取到,作CH⊥于點H,CH即為所求的最小值.根據(jù)模型可知:與AB夾角為60°,故⊥.過點E作EF⊥CH于點F,則HF==1,CF=,所以CH=,因此CG的最小值為.7.如圖,矩形中,,,點是矩形內(nèi)一動點,且,則的最小值為_____.【答案】【詳解】為矩形,又點到的距離與到的距離相等,即點線段垂直平分線上,連接,交與點,此時的值最小,且故答案為:8.如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點P是AC上的動點,連接BP,以BP為邊作等邊△BPQ,連接CQ,則點P在運動過程中,線段CQ長度的最小值是______.【答案】54【詳解】解:如圖,取AB的中點E,連接CE,PE.

∵∠ACB=90°,∠A=30°,

∴∠CBE=60°,

∵BE=AE,

∴CE=BE=AE,

∴△BCE是等邊三角形,

∴BC=BE,

∵∠PBQ=∠CBE=60°,

∴∠QBC=∠PBE,

∵QB=PB,CB=EB,

∴△QBC≌△PBE(SAS),

∴QC=PE,

∴當(dāng)EP⊥AC時,QC的值最小,

在Rt△AEP中,∵AE=52,∠A=30°,

∴PE=12AE=54,

∴CQ的最小值為故答案為:59.如圖,在正方形ABCD中,AB=8,AC與BD交于點O,N是AO的中點,點M在BC邊上,且BM=6.P為對角線BD上一點,則PM﹣PN的最大值為.【答案】2【分析】作以BD為對稱軸作N的對稱點N',連接PN',MN',依據(jù)PM﹣PN=PM﹣PN'≤MN',可得當(dāng)P,M,N'三點共線時,取“=”,再求得=,即可得出PM∥AB∥CD,∠CMN'=90°,再根據(jù)△N'CM為等腰直角三角形,即可得到CM=MN'=2.【解答】解:如圖所示,作以BD為對稱軸作N的對稱點N',連接PN',MN',根據(jù)軸對稱性質(zhì)可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',當(dāng)P,M,N'三點共線時,取“=”,∵正方形邊長為8,∴AC=AB=,∵O為AC中點,∴AO=OC=,∵N為OA中點,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴=∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM為等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值為2,故答案為:2.【點評】本題主要考查了正方形的性質(zhì)以及最短路線問題,凡是涉及最短距離的問題,一般要考慮線段的性質(zhì)定理,結(jié)合軸對稱變換來解決,多數(shù)情況要作點關(guān)于某直線的對稱點.10.如圖,是等邊三角形,,N是的中點,是邊上的中線,M是上的一個動點,連接,則的最小值是________.【答案】【分析】根據(jù)題意可知要求BM+MN的最小值,需考慮通過作輔助線轉(zhuǎn)化BM,MN的值,從而找出其最小值,進(jìn)而根據(jù)勾股定理求出CN,即可求出答案.【解析】解:連接CN,與AD交于點M,連接BM.(根據(jù)兩點之間線段最短;點到直線垂直距離最短),是邊上的中線即C和B關(guān)于AD對稱,則BM+MN=CN,則CN就是BM+MN的最小值.∵是等邊三角形,,N是的中點,

∴AC=AB=6,AN=AB=3,,∴.即BM+MN的最小值為.故答案為:.【點睛】本題考查的是軸對稱-最短路線問題,涉及到等邊三角形的性質(zhì),勾股定理,軸對稱的性質(zhì),等腰三角形的性質(zhì)等知識點的綜合運用.11.如圖,在中,∠ACB=90°,BC=12,AC=9,以點C為圓心,6為半徑的圓上有一個動點D.連接AD、BD、CD,則2AD+3BD的最小值是.【分析】首先對問題作變式2AD+3BD=,故求最小值即可.考慮到D點軌跡是圓,A是定點,且要求構(gòu)造,條件已經(jīng)足夠明顯.當(dāng)D點運動到AC邊時,DA=3,此時在線段CD上取點M使得DM=2,則在點D運動過程中,始終存在.問題轉(zhuǎn)化為DM+DB的最小值,直接連接BM,BM長度的3倍即為本題答案.12.如圖,四邊形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,點M是四邊形ABCD內(nèi)的一個動點,滿足∠AMD=90°,則點M到直線BC的距離的最小值為_____.【答案】【解析】【分析】取AD的中點O,連接OM,過點M作ME⊥BC交BC的延長線于E,點點O作OF⊥BC于F,交CD于G,則OM+ME≥OF.求出OM,OF即可解決問題.【詳解】解:取AD的中點O,連接OM,過點M作ME⊥BC交BC的延長線于E,點點O作OF⊥BC于F,交CD于G,則OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴當(dāng)O,M,E共線時,ME的值最小,最小值為3﹣2.【點睛】本題考查解直角三角形,垂線段最短,直角三角形斜邊中線的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.13.如圖,四邊形是菱形,B=6,且∠ABC=60°,M是菱形內(nèi)任一點,連接AM,BM,CM,則AM+BM+CM的最小值為________.【答案】【詳解】將△BMN繞點B順時針旋轉(zhuǎn)60度得到△BNE,∵BM=BN,∠MBN=∠CBE=60°,∴MN=BM∵M(jìn)C=NE∴AM+MB+CM=AM+MN+NE.當(dāng)A、M、N、E四點共線時取最小值A(chǔ)E.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=AB=3,AH=BH=,∴AE=2AH=.故答案為.14.如圖,在矩形ABCD中,E為AB的中點,P為BC邊上的任意一點,把沿PE折疊,得到,連接CF.若AB=10,BC=12,則CF的最小值為_____.【答案】8【解析】【分析】點F在以E為圓心、EA為半徑的圓上運動,當(dāng)E、F、C共線時時,此時FC的值最小,根據(jù)勾股定理求出CE,再根據(jù)折疊的性質(zhì)得到BE=EF=5即可.【詳解】解:如圖所示,點F在以E為圓心EA為半徑的圓上運動,當(dāng)E、F、C共線時時,此時CF的值最小,根據(jù)折疊的性質(zhì),△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB邊的中點,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE===13,∴CF=CE﹣EF=13﹣5=8.故答案為8.【點睛】本題考查了折疊的性質(zhì)、全等三角形的判定與性質(zhì)、兩點之間線段最短的綜合運用,靈活應(yīng)用相關(guān)知識是解答本題的關(guān)鍵.15、如圖,△ABC中,∠BAC=30°且AB=AC,P是底邊上的高AH上一點.若AP+BP+CP的最小值為2,則BC=_____.【答案】【詳解】如圖將△ABP繞點A順時針旋轉(zhuǎn)60°得到△AMG.連接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,∵M(jìn)G=PB,AG=AP,∠GAP=60°,∴△GAP是等邊三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴當(dāng)M,G,P,C共線時,PA+PB+PC的值最小,最小值為線段CM的長,∵AP+BP+CP的最小值為2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.則BN=AB=1,AN=,CN=2-,∴BC=.故答案為.16.如圖所示,,點為內(nèi)一點,,點分別在上,求周長的最小值_____.【答案】周長的最小值為8【詳解】如圖,作P關(guān)于OA、OB的對稱點,連結(jié)、,交OA、OB于M、N,此時周長最小,根據(jù)軸對稱性質(zhì)可知,,,且,,,,為等邊三角形,即周長的最小值為8.17.在正方形ABCD中,點E為對角線AC(不含點A)上任意一點,AB=;(1)如圖1,將△ADE繞點D逆時針旋轉(zhuǎn)90°得到△DCF,連接EF;①把圖形補充完整(無需寫畫法);②求的取值范圍;(2)如圖2,求BE+AE+DE的最小值.【答案】(1)①補圖見解析;②;(2)【詳解】(1)①如圖△DCF即為所求;②∵四邊形ABCD是正方形,∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,∴AC==AB=4,∵△ADE繞點D逆時針旋轉(zhuǎn)90°得到△DCF,∴∠DCF=∠DAE=45°,AE=CF,∴∠ECF=∠ACD+∠DCF=90°,設(shè)AE=CF=x,EF2=y(tǒng),則EC=4?x,∴y=(4?x)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論