版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆海南省文昌市文昌中學高一數(shù)學第二學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則a,b,c的大小關系為()A. B. C. D.2.設有直線和平面,則下列四個命題中,正確的是()A.若m∥α,n∥α,則m∥n B.若m?α,n?α,m∥β,l∥β,則α∥βC.若α⊥β,m?α,則m⊥β D.若α⊥β,m⊥β,m?α,則m∥α3.函數(shù)的最大值為()A. B. C. D.4.函數(shù)的大致圖像是下列哪個選項()A. B.C. D.5.的展開式中含的項的系數(shù)為()A.-1560 B.-600 C.600 D.15606.在正方體中,,分別為棱,的中點,則異面直線與所成的角為A. B. C. D.7.設,函數(shù)在區(qū)間上是增函數(shù),則()A. B.C. D.8.已知扇形的半徑為,圓心角為,則該扇形的面積為()A. B. C. D.9.在中,角的對邊分別是,若,則()A. B.或 C.或 D.10.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為__________.12.函數(shù)在上是減函數(shù),則的取值范圍是________.13.已知等邊,為中點,若點是所在平面上一點,且滿足,則__________.14.已知的三邊分別是,且面積,則角__________.15.已知向量夾角為,且,則__________.16.在△ABC中,sin2A=sin三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.自變量在什么范圍取值時,函數(shù)的值等于0?大于0呢?小于0呢?18.(1分)設數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=1.(1)求數(shù)列{an}的通項公式;(2)設數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn.19.已知為等差數(shù)列,且,.(1)求的通項公式;(2)若等比數(shù)列滿足,,求數(shù)列的前項和公式.20.已知數(shù)列滿足,,.(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,數(shù)列的前項和,求證:21.已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和為.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
由,,,得解.【題目詳解】解:因為,,,所以,故選:D.【題目點撥】本題考查了指數(shù)冪,對數(shù)值的大小關系,屬基礎題.2、D【解題分析】
在A中,m與n相交、平行或異面;在B中,α與β相交或平行;在C中,m⊥β或m∥β或m與β相交;在D中,由直線與平面垂直的性質(zhì)與判定定理可得m∥α.【題目詳解】由直線m、n,和平面α、β,知:對于A,若m∥α,n∥α,則m與n相交、平行或異面,故A錯誤;對于B,若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交,故B錯誤;對于中,若α⊥β,α⊥β,m?α,則m⊥β或m∥β或m與β相交,故C錯誤;對于D,若α⊥β,m⊥β,m?α,則由直線與平面垂直的性質(zhì)與判定定理得m∥α,故D正確.故選D.【題目點撥】本題考查了命題真假的判斷問題,考查了空間線線、線面、面面的位置關系的判定定理及推論的應用,體現(xiàn)符號語言與圖形語言的相互轉化,是中檔題.3、D【解題分析】
令,根據(jù)正弦型函數(shù)的性質(zhì)可得,那么,可將問題轉化為二次函數(shù)在定區(qū)間上的最值問題.【題目詳解】由題意,令,可得,,∴,∴原函數(shù)的值域與函數(shù)的值域相同.∵函數(shù)圖象的對稱軸為,,取得最大值為.故選:D.【題目點撥】本題考查三角函數(shù)中的恒等變換、函數(shù)的值域,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉化為二次函數(shù)的值域問題.4、B【解題分析】
化簡,然后作圖,值域小于部分翻折關于軸對稱即可.【題目詳解】,的圖象與關于軸對稱,將部分向上翻折,圖象變化過程如下:軸上方部分圖形即為所求圖象.故選:B.【題目點撥】本題主要考查圖形的對稱變化,掌握關于軸對稱是解決問題的關鍵.屬于中檔題.5、A【解題分析】的項可以由或的乘積得到,所以含的項的系數(shù)為,故選A.6、A【解題分析】
如圖做輔助線,正方體中,且,P,M為和中點,,則即為所求角,設邊長即可求得.【題目詳解】如圖,取的中點,連接,,.因為為棱的中點,為的中點,所以,所以,則是異面直線與所成角的平面角.設,在中,,,則,即.【題目點撥】本題考查異面直線所成的角,解題關鍵在于構造包含異面直線所成角的三角形.7、C【解題分析】
首先比較自變量與的大小,然后利用單調(diào)性比較函數(shù)值與的大小.【題目詳解】因為,函數(shù)在區(qū)間上是增函數(shù),所以.故選C.【題目點撥】已知函數(shù)單調(diào)性比較函數(shù)值大小,可以借助自變量的大小來比較函數(shù)值的大小.8、A【解題分析】
化圓心角為弧度值,再由扇形面積公式求解即可.【題目詳解】扇形的半徑為,圓心角為,即,該扇形的面積為,故選.【題目點撥】本題主要考查扇形的面積公式的應用.9、D【解題分析】
直接利用正弦定理,即可得到本題答案,記得要檢驗,大邊對大角.【題目詳解】因為,所以,又,所以,.故選:D【題目點撥】本題主要考查利用正弦定理求角.10、D【解題分析】對于A:取BD中點O,因為,AO所以面AOC,所以,故A對;對于B:當沿對角線折疊成直二面角時,有面平面平面,故B對;對于C:當折疊所成的二面角時,頂點A到底面BCD的距離為,此時,故C對;對于D:若,因為,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯;故選D點睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
利用誘導公式將等式化簡,可求出的值.【題目詳解】由誘導公式可得,故答案為.【題目點撥】本題考查利用誘導公式化簡求值,在利用誘導公式處理化簡求值的問題時,要充分理解“奇變偶不變,符號看象限”這個規(guī)律,考查運算求解能力,屬于基礎題.12、【解題分析】
根據(jù)二次函數(shù)的圖象與性質(zhì),即可求得實數(shù)的取值范圍,得到答案.【題目詳解】由題意,函數(shù)表示開口向下,且對稱軸方程為的拋物線,當函數(shù)在上是減函數(shù)時,則滿足,解得,所以實數(shù)的取值范圍.故答案為:.【題目點撥】本題主要考查了二次函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記二次函數(shù)的圖象與性質(zhì),列出相應的不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.13、0【解題分析】
利用向量加、減法的幾何意義可得,再利用向量數(shù)量積的定義即可求解.【題目詳解】根據(jù)向量減法的幾何意義可得:,即,所以.故答案為:0【題目點撥】本題考查了向量的加、減法的幾何意義以及向量的數(shù)量積,屬于基礎題.14、【解題分析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.15、【解題分析】試題分析:的夾角,,,,.考點:向量的運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標運算公式,涉及幾何圖形的問題,先建立適當?shù)钠矫嬷苯亲鴺讼?,可起到化繁為簡的妙?利用向量夾角公式、模公式及向量垂直的充要條件,可將有關角度問題、線段長問題及垂直問題轉化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).16、π【解題分析】
根據(jù)正弦定理化簡角的關系式,從而湊出cosA【題目詳解】由正弦定理得:a2=則cos∵A∈0,π本題正確結果:π【題目點撥】本題考查利用正弦定理和余弦定理解三角形問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、當或時,函數(shù)的值等于0;當時,函數(shù)的值大于0;當或時,函數(shù)的值小于0.【解題分析】
將問題轉化為解方程和解不等式,以及,分別求解即可.【題目詳解】由題:由得:或;由得:;由得:或,綜上所述:當或時,函數(shù)的值等于0;當時,函數(shù)的值大于0;當或時,函數(shù)的值小于0.【題目點撥】此題考查解二次方程和二次不等式,關鍵在于熟練掌握二次方程和二次不等式的解法,準確求解.18、(1)an=2×【解題分析】試題分析:(1)設出等比數(shù)列{an}的公比q,利用條件a1=4,a3﹣a4(4)數(shù)列{an+bn}是由一個等差數(shù)列和一個等比數(shù)列對應項相加得來的,所以可以采用拆項分組的方法,轉化為等差數(shù)列、等比數(shù)列的前n項和問題來解決.試題解析:解:(1)設數(shù)列{an}的公比為q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合題意,舍去,故q=3.∴an=4×3n﹣1;(4)∵數(shù)列{bn}是首項b1=1,公差d=4的等差數(shù)列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考點:等差數(shù)列與等比數(shù)列.19、(1);(2).【解題分析】
本試題主要是考查了等差數(shù)列的通項公式的求解和數(shù)列的前n項和的綜合運用.、(1)設公差為,由已知得解得,(2),等比數(shù)列的公比利用公式得到和.20、(1)證明見解析,;(2)見解析.【解題分析】
(1)根據(jù)遞推關系式可整理出,從而可證得結論;利用等比數(shù)列通項公式首先求解出,再整理出;(2)根據(jù)可求得,從而得到的通項公式,利用裂項相消法求得,從而使問題得證.【題目詳解】(1)由得:即,且數(shù)列是以為首項,為公比的等比數(shù)列數(shù)列的通項公式為:(2)由(1)得:又即:【題目點撥】本題考查利用遞推關系式證明等比數(shù)列、求解等比數(shù)列通項公式、裂項相消法求解數(shù)列前項和的問題,屬于常規(guī)題型.21、(1)(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚財產(chǎn)分割協(xié)議公證與子女撫養(yǎng)權
- 2025年度水利工程招標投標廉潔保證協(xié)議3篇
- 2024物流公司與國際快遞公司之間的國際快遞服務合同
- 2024資產(chǎn)包居間合同協(xié)議書范本
- 2025年度智能倉儲物流園區(qū)物業(yè)管理合同4篇
- 2025年度綠色能源風力發(fā)電項目承包合同范本3篇
- 2025年度生態(tài)旅游區(qū)樹木承包合同范本4篇
- 2024經(jīng)濟合同范文集合
- 2025年度個人房屋轉租中介服務協(xié)議4篇
- 2025年度綠色校園豬肉配送服務合同3篇
- 藏毛囊腫不伴有膿腫的護理查房
- 創(chuàng)新科技2024年的科技創(chuàng)新和產(chǎn)業(yè)升級
- 喜迎藏歷新年活動方案
- 進修人員培養(yǎng)考核鑒定簿
- 四年級上冊脫式計算400題及答案
- 2024年山東省春季高考技能考試汽車專業(yè)試題庫-上(單選題匯總)
- 前程無憂IQ測評題庫
- 《現(xiàn)代電氣控制技術》課件
- 江蘇決勝新高考2023屆高三年級12月大聯(lián)考英語試題含答案
- 人教精通版三年級英語上冊各單元知識點匯總
- 球罐腳手架施工方案
評論
0/150
提交評論