2024屆湖北省孝感市七校教學聯(lián)盟數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第1頁
2024屆湖北省孝感市七校教學聯(lián)盟數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第2頁
2024屆湖北省孝感市七校教學聯(lián)盟數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第3頁
2024屆湖北省孝感市七校教學聯(lián)盟數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第4頁
2024屆湖北省孝感市七校教學聯(lián)盟數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省孝感市七校教學聯(lián)盟數(shù)學高一下期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學生中隨機抽取25名學生進行問卷調(diào)查,則應抽取的女生人數(shù)為()A.5 B.10 C.15 D.202.在中,若,則是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形3.已知點,,則與向量的方向相反的單位向量是()A. B. C. D.4.某學校為了解1000名新生的身體素質(zhì),將這些學生編號1,2,……,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取50名學生進行體質(zhì)測驗.若66號學生被抽到,則下面4名學生中被抽到的是()A.16 B.226 C.616 D.8565.設是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.6.將函數(shù)的圖象上各點沿軸向右平移個單位長度,所得函數(shù)圖象的一個對稱中心為()A. B. C. D.7.法國“業(yè)余數(shù)學家之王”皮埃爾·德·費馬在1936年發(fā)現(xiàn)的定理:若x是一個不能被質(zhì)數(shù)p整除的整數(shù),則必能被p整除,后來人們稱為費馬小定理.按照該定理若在集合中任取兩個數(shù),其中一個作為x,另一個作為p,則所取的兩個數(shù)符合費馬小定理的概率為()A. B. C. D.8.方程的解所在的區(qū)間為()A. B.C. D.9.同時拋擲兩枚骰子,朝上的點數(shù)之和為奇數(shù)的概率是()A. B. C. D.10.在中,,設向量與的夾角為,若,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集為______.12.從甲、乙、丙等5名候選學生中選2名作為青年志愿者,則甲、乙、丙中有2個被選中的概率為________.13.已知函數(shù)的最小正周期為,若將該函數(shù)的圖像向左平移個單位后,所得圖像關于原點對稱,則的最小值為________.14.某單位為了了解用電量度與氣溫之間的關系,隨機統(tǒng)計了某天的用電量與當天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預測當氣溫為5℃時,用電量的度數(shù)約為____.15.已知平面向量,若,則________16.已知且,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.18.已知函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間:(2)求函數(shù)在區(qū)間上的最大值及取最大值時的集合.19.設和是兩個等差數(shù)列,記(),其中表示,,這個數(shù)中最大的數(shù).已知為數(shù)列的前項和,,.(1)求數(shù)列的通項公式;(2)若,求,,的值,并求數(shù)列的通項公式;(3)求數(shù)列前項和.20.已知函數(shù).(1)判斷函數(shù)奇偶性;(2)討論函數(shù)的單調(diào)性;(3)比較與的大小.21.某公司為了提高工效,需分析該公司的產(chǎn)量臺與所用時間小時之間的關系,為此做了四次統(tǒng)計,所得數(shù)據(jù)如下:產(chǎn)品臺數(shù)臺2345所用時間小時34求出y關于x的線性回歸方程;預測生產(chǎn)10臺產(chǎn)品需要多少小時?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

利用分層抽樣的定義和方法求解即可.【題目詳解】設應抽取的女生人數(shù)為,則,解得.故選B【題目點撥】本題主要考查分層抽樣的定義及方法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.2、A【解題分析】

首先根據(jù)降冪公式把等式右邊降冪你,再根據(jù)把換成與的關系,進一步化簡即可.【題目詳解】,,,選A.【題目點撥】本題主要考查了二倍角,兩角和與差的余弦等,需熟記兩角和與差的正弦余弦等相關公式,以及特殊三角函數(shù)的值是解決本題的關鍵,屬于基礎題.3、A【解題分析】

根據(jù)單位向量的定義即可求解.【題目詳解】,向量的方向相反的單位向量為,故選A.【題目點撥】本題主要考查了向量的坐標運算,向量的單位向量的概念,屬于中檔題.4、B【解題分析】

抽樣間隔為,由第三組中的第6個數(shù)被抽取到,結合226是第12組中的第6個數(shù),從而可得結果.【題目詳解】從這些新生中用系統(tǒng)抽樣方法等距抽取50名學生進行體質(zhì)測驗,抽樣間隔為,號學生被抽到,第四組中的第6個數(shù)被抽取到,226是第12組中的第6個數(shù),被抽到,故選:B.【題目點撥】本題主要考查系統(tǒng)抽樣的性質(zhì),確定抽樣間隔是解題的關鍵,屬于基礎題.5、B【解題分析】

分析:作圖,D為MO與球的交點,點M為三角形ABC的中心,判斷出當平面時,三棱錐體積最大,然后進行計算可得.詳解:如圖所示,點M為三角形ABC的中心,E為AC中點,當平面時,三棱錐體積最大此時,,點M為三角形ABC的中心中,有故選B.點睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當平面時,三棱錐體積最大很關鍵,由M為三角形ABC的重心,計算得到,再由勾股定理得到OM,進而得到結果,屬于較難題型.6、A【解題分析】

先求得圖象變換后的解析式,再根據(jù)正弦函數(shù)對稱中心,求出正確選項.【題目詳解】向右平移的單位長度,得到,由解得,當時,對稱中心為,故選A.【題目點撥】本小題主要考查三角函數(shù)圖象變換,考查三角函數(shù)對稱中心的求法,屬于基礎題.7、A【解題分析】

用列舉法結合古典概型概率公式計算即可得出答案.【題目詳解】用表示抽取的兩個數(shù),其中第一個為,第二個為總的基本事件分別為:,,,共12種其中所取的兩個數(shù)符合費馬小定理的基本事件分別為:,,共8種則所取的兩個數(shù)符合費馬小定理的概率故選:A【題目點撥】本題主要考查了利用古典概型概率公式計算概率,屬于基礎題.8、B【解題分析】試題分析:由題意得,設函數(shù),則,所以,所以方程的解所在的區(qū)間為,故選B.考點:函數(shù)的零點.9、A【解題分析】

分別求出基本事件的總數(shù)和點數(shù)之和為奇數(shù)的事件總數(shù),再由古典概型的概率計算公式求解.【題目詳解】同時拋擲兩枚骰子,總共有種情況,朝上的點數(shù)之和為奇數(shù)的情況有種,則所求概率為.故選:A.【題目點撥】本題考查古典概型概率的求法,屬于基礎題.10、A【解題分析】

根據(jù)向量與的夾角的余弦值,得到,然后利用正弦定理,表示出,根據(jù)的范圍,得到的范圍.【題目詳解】因為向量與的夾角為,且,所以,在中,由正弦定理,得,所以,因為,所以,所以.故選:A.【題目點撥】本題考查向量的夾角,正弦定理解三角形,求正弦函數(shù)的值域,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)一元二次不等式的解法直接求解可得結果.【題目詳解】由得:即不等式的解集為故答案為:【題目點撥】本題考查一元二次不等式的求解問題,屬于基礎題.12、【解題分析】因為從5名候選學生中任選2名學生的方法共有10種,而甲、乙、丙中有2個被選中的方法有3種,所以甲、乙、丙中有2個被選中的概率為.13、【解題分析】

先利用周期公式求出,再利用平移法則得到新的函數(shù)表達式,依據(jù)函數(shù)為奇函數(shù),求出的表達式,即可求出的最小值.【題目詳解】由得,所以,向左平移個單位后,得到,因為其圖像關于原點對稱,所以函數(shù)為奇函數(shù),有,則,故的最小值為.【題目點撥】本題主要考查三角函數(shù)的性質(zhì)以及圖像變換,以及型的函數(shù)奇偶性判斷條件.一般地為奇函數(shù),則;為偶函數(shù),則;為奇函數(shù),則;為偶函數(shù),則.14、1【解題分析】

由表格得,即樣本中心點的坐標為,又因為樣本中心點在回歸方程上且,解得:,當時,,故答案為1.考點:回歸方程【名師點睛】本題考查線性回歸方程,屬容易題.兩個變量之間的關系,除了函數(shù)關系,還存在相關關系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關系的了解.解題時根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個確定的方程,根據(jù)所給的的值,代入線性回歸方程,預報要銷售的件數(shù).15、1【解題分析】

根據(jù)即可得出,解出即可.【題目詳解】∵;∴;解得,故答案為1.【題目點撥】本題主要考查向量坐標的概念,以及平行向量的坐標關系,屬于基礎題.16、【解題分析】

根據(jù)數(shù)列極限的方法求解即可.【題目詳解】由題,故.又.故.故.故答案為:【題目點撥】本題主要考查了數(shù)列極限的問題,屬于基礎題型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)計算出的坐標,然后利用共線向量的坐標表示列出等式求出實數(shù)的值;(2)求出和,從而可得出在方向上的投影為.【題目詳解】(1),,,,,,解得;(2),,在方向上的投影.【題目點撥】本題考查平面向量的坐標運算,考查共線向量的坐標運算以及投影的計算,在解題時要弄清楚這些知識點的定義以及坐標運算律,考查計算能力,屬于中等題.18、(1),單調(diào)遞增區(qū)間為;(2)最大值為,取最大值時,的集合為.【解題分析】

(1)對進行化簡轉(zhuǎn)換為正弦函數(shù),可得其最小正周期和遞增區(qū)間;(2)根據(jù)(1)的結果,可得正弦函數(shù)的最大值和此時的的集合.【題目詳解】解:(1)∴.增區(qū)間為:即單調(diào)遞增區(qū)間為(2)當時,的最大值為,此時,∴取最大值時,的集合為.【題目點撥】本題考查二倍角公式和輔助角公式以及正弦函數(shù)的性質(zhì),屬于基礎題.19、(1);(2),,,;(3)【解題分析】

(1)根據(jù)題意,化簡得,運用已知求公式,即可求解通項公式;(2)根據(jù)題意,寫出通項,根據(jù)定義,令,可求解,,的值,再判斷單調(diào)遞減,可求數(shù)列的通項公式;(3)由(1)(2)的數(shù)列、的通項公式,代入數(shù)列中,運用錯位相減法求和.【題目詳解】(1)∵,∴,當時,,化簡得,∴,當時,,,∵,∴,∴是首項為1,公差為2的等差數(shù)列,∴.(2),,,當時,,∴單調(diào)遞減,所以.(3)作差,得【題目點撥】本題考查(1)已知求公式;(2)數(shù)列的單調(diào)性;(3)錯位相減法求和;考查計算能力,考查分析問題解決問題的能力,綜合性較強,有一定難度.20、(1)是偶函數(shù)(2)見解析(3)【解題分析】

(1)由奇偶函數(shù)的定義判斷;(2)由單調(diào)性的定義證明;(3)由于函數(shù)為偶函數(shù),因此只要比較與的大小,因此先確定與的大小,這就得到分類標準.【題目詳解】(1)是偶函數(shù)(2)當時,是增函數(shù);當時,是減函數(shù);先證明當時,是增函數(shù)證明:任取,且,則,且,,即:當時,是增函數(shù)∵是偶函數(shù),∴當時,是減函數(shù).(3)要比較與的大小,∵是偶函數(shù),∴只要比較與大小即可.當時,即時,∵當時,是增函數(shù),∴當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論