湖南省臨澧一中2024屆數(shù)學高一第二學期期末預測試題含解析_第1頁
湖南省臨澧一中2024屆數(shù)學高一第二學期期末預測試題含解析_第2頁
湖南省臨澧一中2024屆數(shù)學高一第二學期期末預測試題含解析_第3頁
湖南省臨澧一中2024屆數(shù)學高一第二學期期末預測試題含解析_第4頁
湖南省臨澧一中2024屆數(shù)學高一第二學期期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省臨澧一中2024屆數(shù)學高一第二學期期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為,則目標受損但未被擊毀的概率為()A. B. C. D.2.圓C:x2+yA.2 B.3 C.1 D.23.《九章算術(shù)》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧所對的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗公式計算所得弧田面積為()A. B. C. D.4.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角5.若,則下列不等式不成立的是()A. B. C. D.6.已知是偶函數(shù),且時.若時,的最大值為,最小值為,則()A.2 B.1 C.3 D.7.宋元時期數(shù)學名著《算學啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入的a,b分別為5,2,則輸出的()A.5 B.4 C.3 D.98.已知,是兩個不同的平面,是兩條不同的直線,下列命題中錯誤的是()A.若∥,,,則B.若∥,,,則C.若,,,則⊥D.若⊥,,,,則9.等差數(shù)列中,,則的值為()A.14 B.17 C.19 D.2110.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前項和為,若,則_______.12.已知函數(shù),對于上的任意,,有如下條件:①;②;③;④.其中能使恒成立的條件序號是__________.13.在中,角A,B,C的對邊分別為,若,則此三角形的最大內(nèi)角的度數(shù)等于________.14.函數(shù),的反函數(shù)為__________.15.的化簡結(jié)果是_________.16.在中角所對的邊分別為,若則___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓:.(1)過的直線與圓:交于,兩點,若,求直線的方程;(2)過的直線與圓:交于,兩點,直接寫出面積取值范圍;(3)已知,,圓上是否存在點,使得,請說明理由.18.在中,內(nèi)角所對的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.19.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).20.已知數(shù)列滿足,,.(1)求證數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,數(shù)列的前項和,求證:21.在中,A,B,C所對的邊分別為,滿足.(I)求角A的大?。?Ⅱ)若,D為BC的中點,且的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由已知條件利用對立事件概率計算公式直接求解.【題目詳解】由于一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為;所以目標受損的概率為:;目標受損分為擊毀和未被擊毀,它們是對立事件;所以目標受損的概率目標受損被擊毀的概率目標受損未被擊毀的概率;故目標受損但未被擊毀的概率目標受損的概率目標受損被擊毀的概率,即目標受損但未被擊毀的概率;故答案選D【題目點撥】本題考查概率的求法,注意對立事件概率計算公式的合理運用,屬于基礎(chǔ)題.2、D【解題分析】

由點到直線距離公式,求出圓心到直線y=x的距離d,再由弦長=2r【題目詳解】因為圓C:x2+y2-2x=0所以圓心(1,0)到直線y=x的距離為d=1-0因此,弦長=2r故選D【題目點撥】本題主要考查求圓被直線所截弦長問題,常用幾何法處理,屬于常考題型.3、C【解題分析】

首先根據(jù)圖形計算出矢,弦,再帶入弧田面積公式即可.【題目詳解】如圖所示:因為,,為等邊三角形.所以,矢,弦..故選:C【題目點撥】本題主要考查扇形面積公式,同時考查學生對題意的理解,屬于中檔題.4、D【解題分析】

根據(jù)象限角寫出的取值范圍,討論即可知在第一或第三象限角【題目詳解】依題意得,則,當時,是第一象限角當時,是第三象限角【題目點撥】本題主要考查象限角,屬于基礎(chǔ)題.5、A【解題分析】

由題得a<b<0,再利用作差比較法判斷每一個選項的正誤得解.【題目詳解】由題得a<b<0,對于選項A,=,所以選項A錯誤.對于選項B,顯然正確.對于選項C,,所以,所以選項C正確.對于選項D,,所以選項D正確.故答案為A【題目點撥】(1)本題主要考查不等式的基本性質(zhì)和實數(shù)大小的比較,意在考查學生對這些知識的掌握水平和分析推理能力.(2)比差的一般步驟是:作差→變形(配方、因式分解、通分等)→與零比→下結(jié)論;比商的一般步驟是:作商→變形(配方、因式分解、通分等)→與1比→下結(jié)論.如果兩個數(shù)都是正數(shù),一般用比商,其它一般用比差.6、B【解題分析】

根據(jù)函數(shù)的對稱性得到原題轉(zhuǎn)化為直接求的最大和最小值即可.【題目詳解】因為函數(shù)是偶函數(shù),函數(shù)圖像關(guān)于y軸對稱,故得到時,的最大值和最小值,與時的最大值和最小值是相同的,故直接求的最大和最小值即可;根據(jù)對勾函數(shù)的單調(diào)性得到函數(shù)的最小值為,,故最大值為,此時故答案為:B.【題目點撥】這個題目考查了函數(shù)的奇偶性和單調(diào)性的應用,屬于基礎(chǔ)題。對于函數(shù)的奇偶性,主要是體現(xiàn)函數(shù)的對稱性,這樣可以根據(jù)對稱性得到函數(shù)在對稱區(qū)間上的函數(shù)值的關(guān)系,使得問題簡化.7、B【解題分析】

由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出,分析循環(huán)中各變量的變化情況,可得答案.【題目詳解】當時,,,滿足進行循環(huán)的條件;當時,,,滿足進行循環(huán)的條件;當時,,,滿足進行循環(huán)的條件;當時,,,不滿足進行循環(huán)的條件;故選:B【題目點撥】本題主要考查程序框圖,解題的關(guān)鍵是讀懂流程圖各個變量的變化情況,屬于基礎(chǔ)題.8、A【解題分析】

根據(jù)平面和直線關(guān)系,依次判斷每個選項得到答案.【題目詳解】A.若,,,則如圖所示情況,兩直線為異面直線,錯誤其它選項正確.故答案選A【題目點撥】本題考查了直線平面的關(guān)系,找出反例是解題的關(guān)鍵.9、B【解題分析】

利用等差數(shù)列的性質(zhì),.【題目詳解】,解得:.故選B.【題目點撥】本題考查了等比數(shù)列的性質(zhì),屬于基礎(chǔ)題型.10、A【解題分析】

通過計算兩個向量的數(shù)量積,然后再判斷兩個向量能否寫成的形式,這樣可以選出正確答案.【題目詳解】因為,,所以,而不存在實數(shù),使成立,因此與不共線,故本題選A.【題目點撥】本題考查了兩個平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

先由題意,得到,求出,再由等差數(shù)列的性質(zhì),即可得出結(jié)果.【題目詳解】因為等差數(shù)列的前項和為,若,則,所以,因此.故答案為:【題目點撥】本題主要考查等差數(shù)列的性質(zhì)的應用,熟記等差數(shù)列的求和公式,以及等差數(shù)列的性質(zhì)即可,屬于??碱}型.12、③④【解題分析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函數(shù),∴g(x)圖象關(guān)于y軸對稱,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函數(shù),在[﹣,0)是減函數(shù),故③x1>|x2|;④時,g(x1)>g(x2)恒成立,故答案為:③④.點睛:此題考查的是函數(shù)的單調(diào)性的應用;已知表達式,根據(jù)表達式判斷函數(shù)的單調(diào)性,和奇偶性,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反,根據(jù)單調(diào)性的定義可知,增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越大函數(shù)值越小。13、【解題分析】

根據(jù)大角對大邊,利用余弦定理直接計算得到答案.【題目詳解】在中,角A,B,C的對邊分別為,若不妨設三邊分別為:3,5,7根據(jù)大角對大邊:角C最大故答案為【題目點撥】本題考查了余弦定理,屬于簡單題.14、【解題分析】

將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【題目詳解】因為,所以,則反函數(shù)為:且.【題目點撥】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.15、【解題分析】原式,因為,所以,且,所以原式.16、【解題分析】,;由正弦定理,得,解得.考點:正弦定理.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2);(3)存在,理由見解析【解題分析】

求得圓的圓心和半徑.(1)設出直線的方程,利用弦長、勾股定理和點到直線距離列方程,解方程求得直線的斜率,進而求得直線的方程.(2)利用三角形的面積公式列式,由此求得面積取值范圍.(3)求得三角形外接圓的方程,根據(jù)圓和圓的位置關(guān)系,判斷出點存在.【題目詳解】圓心為,半徑為.(1)直線有斜率,設:,圓心到直線的距離為,∵,則由,得,直線的方程為或(2)依題意可知,三角形的面積為,由于,所以,所以.(3)設三角形的外接圓圓心為(),半徑為,由正弦定理得,,所以,所以圓的圓心為,所以圓的方程為,圓與圓滿足圓心距:,∴圓與圓相交于兩點,圓上存在兩個這樣的點,滿足題意.【題目點撥】本小題主要考查直線和圓的位置關(guān)系,考查圓和圓的位置關(guān)系,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.18、(Ⅰ).=.(Ⅱ).【解題分析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因為,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19、(1)詳見解析;(2)99.【解題分析】

(1)利用數(shù)列遞推公式取倒數(shù),變形可得,從而可證數(shù)列為等比數(shù)列;(2)確定數(shù)列的通項,利用等比數(shù)列的求和公式求和,即可求最大的正整數(shù).【題目詳解】解(1)∵,∴,∵,∴∴數(shù)列為等比數(shù)列.(2)由(1)可求得,∴.∴.因為在上單調(diào)遞增,又因為,∴【題目點撥】本題考查數(shù)列遞推公式,考查等比數(shù)列的證明,考查等比數(shù)列的求和公式,屬于中檔題.20、(1)證明見解析,;(2)見解析.【解題分析】

(1)根據(jù)遞推關(guān)系式可整理出,從而可證得結(jié)論;利用等比數(shù)列通項公式首先求解出,再整理出;(2)根據(jù)可求得,從而得到的通項公式,利用裂項相消法求得,從而使問題得證.【題目詳解】(1)由得:即,且數(shù)列是以為首項,為公比的等比數(shù)列數(shù)列的通項公式為:(2)由(1)得:又即:【題目點撥】本題考查利用遞推關(guān)系式證明等比數(shù)列、求解等比數(shù)列通項公式、裂項相消法求解數(shù)列前項和的問題,屬于常規(guī)題型.21、(I);(II).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論