版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
高考理綜物理大題專項集中訓練50題含答案
學校:姓名:班級:考號:
一、解答題
1.如圖所示,質量仞=2kg的木板靜止在光滑水平地面上,一質量,w=lkg的滑塊(可
視為質點)以u尸3m/s的初速度從左側滑上木板水平地面右側距離足夠遠處有一小型固
定擋板,木板與擋板碰后速度立即減為零并與擋板粘連,最終滑塊恰好未從木板表面滑
落,已知滑塊與木板之間動摩擦因數(shù)為〃=0.2,重力加速度g=10m/s2,求:
(1)木板與擋板碰撞前瞬間的速度?
(2)木板與擋板碰撞后滑塊的位移?
(3)木板的長度?
---?%
tn
.......一」...........................一…
【答案】(1)lm/s;(2)0.25m;(3)1.75m
【解析】
【詳解】
(1)木板與擋板碰撞前,滑塊與木板已經(jīng)達到共速,則滑塊與木板動量守恒
mvQ=+
可得
v=lm/s
(2)木板靜止后,滑塊勻減速運動,根據(jù)動能定理有
八1、
一Rtngs=0--mv~
解得
5=0.25m
(3)從滑塊滑上木板到共速時,由能量守恒得
gmv?=g(/"+M)/+fjmgsx
故木板的長度
L=s+st=1.75m
2.為了安全,在公路上行駛的汽車之間應保持必要的距離。已知某公路的最高限速丫=
72km/h。假設前方車輛突然停止,后車司機從發(fā)現(xiàn)這一情況,經(jīng)操縱剎車,到汽車開
始減速所經(jīng)歷的時間(即反應時間)r=0.50so剎車時汽車的加速度大小為4m/s2?該高
速公路上汽車間的距離至少應為多少?
【答案】60m
【解析】
【詳解】
由于
%=72km/h=20m/s
在反應時間內(nèi)汽車的位移
%=v0/=20x0.50m=10m
勻減速直線運動的位移
x=-~—=50m
2'2a
則
x=x(+x2=(10+50)m=60m
3.某物理實驗小組設計一個測量游泳池深度的小實驗,將一個小木球離水面5m高靜
止釋放(不計空氣阻力),經(jīng)1.40s后落入池底速度剛好為零。假定木球在水中做勻減速
運動,重力加速度g=10m/s2。求:
(1)木球剛接觸水時的速度
(2)木球在水中運動的加速度
(3)游泳池水的深度
【答案】(1)10m/s:(2)-25m/s2;(3)2m
【解析】
【詳解】
(1)木球剛接觸水時的速度
v=12gh=>/2xlOx5m/s=1Om/s
(2)在空中運動的時間
在水中的時間
?2=0.4S
木球在水中運動的加速度
a==°"。m/s2=-25m/s2
t20.4
(3)游泳池水的深度
試卷第2頁,共58頁
..v10_..
h=—ty=—x0.4m=2m
222
4.一定質量的理想氣體,狀態(tài)從ATB-C-OTA的變化過程可用如圖所示的p-V圖
線描述,其中?!狝為等溫線,氣體在狀態(tài)A時溫度為7M=3OOK,求:
(1)氣體在狀態(tài)C時溫度TC;
(2)若氣體在A—B過程中吸熱1OOOJ,則在過程中氣體內(nèi)能如何變化?變化了多
少?
V/L
【答案】(D375K;(2)氣體內(nèi)能增加,增加了400J
【解析】
【詳解】
(l)Q-A為等溫線,則
竊=">=300K
C到。過程,由蓋一呂薩克定律得
2=迨
黑Tn
解得
7c=375K
(2)A-B過程壓強不變,氣體做功為
W=-pAV=-2x105x3xl0'J=-600J
由熱力學第一定律,得
AU=Q+W=\OOOJ-600J=400J
則氣體內(nèi)能增加,增加了400J
5.如圖所示,透熱的氣缸內(nèi)封有一定質量的理想氣體,缸體質量M=200kg,活塞質量
〃?=10kg,活塞面積S=100cm2活塞與氣缸壁無摩擦且不漏氣。此時,缸內(nèi)氣體的溫度為
27℃,活塞正位于氣缸正中,整個裝置都靜止。已知大氣壓恒為po=1.0xl()5pa,重力加
速度為g=10m/s2。求:
(1)缸內(nèi)氣體的壓強P"
(2)缸內(nèi)氣體的溫度升高到多少時,活塞恰好會靜止在氣缸缸口A8處?
【答案】(l)3xlO5pa;(2)327℃
【解析】
【詳解】
(1)以缸體為對象(不包括活塞)列缸體受力平衡方程:
ptS=Mg+p?S
解之得:
p,=3xlO5Pa
(2)當活塞恰好靜止在氣缸缸口A8處時,缸內(nèi)氣體溫度為右,壓強為巴此時仍有
0s=Mg+p?S
則缸內(nèi)氣體為等壓變化,對這一過程研究缸內(nèi)氣體,由蓋.呂薩克定律得:
SxQ.5/5x/
所以
7;=27;=600K
故氣體的溫度是:
(600-273)℃=327℃
6.如圖所示,A氣缸截面積為500cm2,A、B兩個氣缸中裝有體積均為10L、壓強均
為latm、溫度均為27°C的理想氣體,中間用細管連接。細管中有一絕熱活塞細管
容積不計?,F(xiàn)給左面的活塞N施加一個推力F=:X1()3N,使其緩慢向右移動,同時給B
中氣體加熱,使此過程中A氣缸中的氣體溫度保持不變,活塞M保持在原位置不動,
最終系統(tǒng)達到平衡。不計活塞與器壁間的摩擦,周圍大氣壓強為latm^gPa,求
(1)系統(tǒng)平衡后活塞N向右移動的距離;
試卷第4頁,共58頁
(2)系統(tǒng)平衡后B氣缸中氣體的溫度。
N
【答案】⑴5cm;(2)400K
【解析】
【詳解】
(1)加力產(chǎn)后,A中氣體的壓強為
F|xlO34
P,=^+—=(I.OxlO5+^——-)Pa=-xlO5Pa
S500x103
A中氣體做等溫變化,由玻意耳定律得
PM=P'AYA
解得
V/=7.5L
活塞N運動前后A的長度分別為
IQxlQ3.匕7.5xl()3
cm=20cmcm=15cm
~S~500A~~S~500
故活塞N向右移動的距離是
^x=LA-L'A=5cm
(2)對B中氣體
,,4<
/^=^=-xlO5Pa
根據(jù)查理定律得又
TBTB
及=(273+27)K=300K,?=1.0x10'Pa
解得
TB'=400K
7.如圖,質量分別為,〃/=1.0kg和/"2=2.0kg的彈性小球a、b,用輕繩緊緊的把它們
捆在一起,使它們發(fā)生微小的形變。該系統(tǒng)以速度%=0.10m/s沿光滑水平面向右做直
線運動。某時刻輕繩突然自動斷開,斷開后兩球仍沿原直線運動。經(jīng)過時間f=5.0s,
測得兩球相距s=4.5m,求:
⑴剛分離時4、6兩小球的速度大小盯、V2;
(2)兩球分開過程中釋放的彈性勢能Ep。
【答案】(1)0.7m/s和0.2m/s;(2)0.27J
【解析】
【詳解】
(1)由動量守恒定律得
(mi+m2)vo—mivi+m2V2
根據(jù)題意又有
S=Vlt—V2t
所以
v/=0.70m/s
V2=-0.20m/s
即剛分離時兩球的速度大小分別為0.7m/s和0.2m/s
(2)由能量守恒定律得
昂=g叫號+g?¥一g(叫+加2)1
代入數(shù)據(jù)得
昂=0.27J
8.足夠長的水平傳送帶右側有一段與傳送帶上表面相切的!光滑圓弧軌道,質量為
M=2kg的小木盒從離圓弧底端住0.8m處由靜止釋放,滑上傳送帶后作減速運動,1s后
恰好與傳送帶保持共速。傳送帶始終以速度大小u逆時針運行,木盒與傳送帶之間的動
摩擦因數(shù)為〃=02。木盒與傳送帶保持相對靜止后,先后相隔7=4s,以%=l()m/s的
速度在傳送帶左端向右推出兩個完全相同的光滑小球,小球的質量〃?=lkg。第1個球與
木盒相遇后,球立即進入盒中并與盒保持相對靜止,第2個球出發(fā)后歷時^仁。.5s與木
盒相遇。取g=10m/s2,求:
(1)傳送帶運動的速度大小v,以及木盒與第?個小球相碰后瞬間兩者共同運動速度大小
VI;
(2)第1個球出發(fā)后經(jīng)過多長時間與木盒相遇;
試卷第6頁,共58頁
(3)從木盒與第1個球相遇至與第2個球相遇的過程中,由于木盒與傳送帶間的摩擦而產(chǎn)
【詳解】
(1)對木盒從弧面下滑的過程由機械能守恒得
Mgh=^Mv'2
木箱滑上傳送帶后做減速運動,由運動學公式有丫=丫'-畫',對箱在帶上由牛頓第二定
律有
1.tMg-Ma
代入數(shù)據(jù)聯(lián)立解得傳送帶的速度
v=2m/s
設第1個球與木盒相遇,根據(jù)動量守恒定律得
mva—Mv=(,〃+匕
代入數(shù)據(jù),解得
W=2m/s
(2)設第1個球經(jīng)過為時間與木盒在離傳送帶左端s處相遇,則
s=匕府
設第1個球進入木盒后兩者共同運動的加速度為。,則有
+A/)g=(/n+M)a
得
t7=/zg=2m/s2
設木盒減速運動的時間為〃,加速到與傳送帶相同的速度的時間為⑶則
故木盒在2s內(nèi)的位移為零依題意
s=%加+vt3
其中為木盒回到與I球碰撞點后再隨帶運動的時間,對I球和2球有
f0+f+If2+八=T+A/
代入數(shù)據(jù)解得
255
s=—m,t(、=-s
306
(3)從木盒與第1個球相遇至與盒再次與傳送帶共速過程,傳送帶的位移為x,木盒先向
右減速運動的位移為制,然后反向加速運動的位移為X2,則
x=u(4+z2)=4m
v,
玉=x?=-tt=lm
從木盒與第1個球相遇至與第2個球相遇的過程中,木盒相對于傳送帶運動的路程為
△s=x+xi—%2=4m
所以木盒與傳送帶間的摩擦而產(chǎn)生的熱量為
Q=〃(M+ni)gAx=24J
9.如圖所示,一根長L=100cm、一端封閉的細玻璃管開口向上豎直放置,管內(nèi)用
〃=25cm長的水銀柱封閉了一段長。=30cm的空氣柱。已知大氣壓強為75cmHg,玻
璃管周圍環(huán)境溫度為27℃。求:
(1)若將玻璃管緩慢倒轉至開口向下,玻璃管中氣柱將變成多長;
(2)接著緩慢升高管內(nèi)氣體溫度,溫度最高升高到多少攝氏度時,管內(nèi)水銀恰好要溢出。
【答案】(l)60cm;(2)102、
【解析】
【詳解】
試卷第8頁,共58頁
⑴以玻璃管內(nèi)封閉氣體為研究對象,設玻璃管橫截面積為S,初態(tài)壓強、體積為
Pi=Po+h=l0°cmHg
匕=0S=30S
倒轉后壓強、體積為
p2=Po-h=5OcmHg
V2=L2S
由玻意耳定律可得
Pl-=pj]
代入數(shù)據(jù)解得玻璃管中氣柱將變?yōu)?/p>
L2=60cm
(2)由題意知初態(tài)的溫度
7;=4=(273+27)K=300K
當水銀柱與管口相平時,管中氣柱長為
=L-h=100cm-25cm=75cm
體積為
匕=&S=75S
壓強為
py=p0-h=50cmHg
由理想氣體狀態(tài)方程可得
-2匕_-3%
T2~T3
代入數(shù)據(jù)解得
7;=375K
Z=(7;-273)℃=102℃
即溫度最高升高到102c時,管內(nèi)水銀恰好要溢出。
10.如圖所示,絕熱汽缸倒扣放置,質量為M的絕熱活塞在汽缸內(nèi)封閉一定質量的理
想氣體,活塞與汽缸間摩擦可忽略不計,活塞下部空間與外界連通,汽缸底部連接一u
形細管(管內(nèi)氣體的體積忽略不計)。初始時,封閉氣體溫度為T,活塞距離汽缸底部
為尻,細管內(nèi)兩側水銀柱存在高度差。已知水銀密度為",大氣壓強為po,汽缸橫截面
積為S,重力加速度為g。
(1)求u形細管內(nèi)兩側水銀柱的高度差;
(2)通過加熱裝置緩慢提升氣體溫度使活塞下降A/?。,求此時的溫度;此加熱過程中,
若氣體吸收的熱量為。,求氣體內(nèi)能的變化。
加熱絲
Mhr.+△優(yōu)F/\
【答案】⑴—;(2)°~T.Q-(poS-Mg)岫、
、P4)0
【解析】
【詳解】
(1)封閉氣體的壓強為P,對活塞分析,根據(jù)平衡條件有
P0s=pS+Mg
用水銀柱表達氣體的勻強為
P=P「PgM
解得到
A//
Sp
(2)加熱過程中氣體變化是等壓變化
娟=(4+△%/
”一T
解得到
T=^-^T0
%
氣體對外做功為
W=萬幽>=(p0S-Mg)的)
則內(nèi)能的變化
△U=Q_W=Q_(p.S_M?)M,
11.如圖所示,在y>0的區(qū)域內(nèi)有沿y軸正方向的勻強電場,在y<0的區(qū)域內(nèi)有垂直
坐標平面向里的勻強磁場。一電子(質量為加、電荷量為e)從y軸上A點以沿X軸正
方向的初速度如開始運動。當電子第一次穿越x軸時,恰好到達C點;當電子第二次穿
試卷第10頁,共58頁
越x軸時,恰好到達坐標原點;當電子第三次穿越x軸時,恰好到達0點。C、D兩點
均未在圖中標出。己知A、C點到坐標原點的距離分別為小2d。不計電子的重力。求:
(1)電場強度E的大??;
(2)磁感應強度8的大??;
【解析】
【詳解】
(1)電子在電場中做類平拋運動,設電子從A到C的時間為〃
2d=%
d=—atf
21
eE
a=——
m
求出
E=^
led
(2)設電子進入磁場時速度為v,v與x軸的夾角為仇則
tan0=—=1
%
9=45。
v=V2v0
電子進入磁場后做勻速圓周運動,洛侖茲力提供向心力
2
v-
evB=m—
r=\[ld
得
(3)由拋物線的對稱關系,電子從0點到D點在電場中運動的時間為
4d
20=—
%
電子在磁場中運動的時間
3_327rm3冗d
t,=—/=---------=------
~44eB2v0
電子從C運動到。的時間
d(8+3/r)
t=2tl+t2=
2%
12.如圖為某高壓鍋結構示意圖,鍋蓋上有兩個氣孔,氣孔1使鍋內(nèi)與外界連通,此時
鍋內(nèi)氣體與外界大氣壓強相等。當鍋內(nèi)溫度達到40C時,氣孔1會封閉,將鍋內(nèi)外隔
離。若鍋內(nèi)溫度繼續(xù)升高,鍋內(nèi)氣體壓強增大,當壓強增大到設計的最大值時,氣體會
頂起氣孔2上的限壓閥。已知限壓閥的質量為20g,氣孔2的橫截面積為8mm"鍋的
容積為0.040?,現(xiàn)在鍋內(nèi)放入20℃、極少量的水,然后蓋好鍋蓋加熱,很快水完全汽
化后氣孔1封閉。求:(氣體可視為理想氣體,大氣壓強為=L()xl()5Pa)
(1)氣孔2上的限壓閥被頂起時,鍋內(nèi)氣體的溫度是多少?
(2)從氣孔1封閉到溫度升到120℃,漏出的氣體占氣孔1封閉時鍋內(nèi)氣體的百分比。
限壓閥
試卷第12頁,共58頁
【答案】⑴118.25℃;⑵0.50%
【解析】
【分析】
【詳解】
(1)氣體在氣孔1封閉到氣孔2上的限壓閥被頂起的過程中,據(jù)查理定律
P1.-P2.
T1八
Pi=P。
限壓閥
P2sLp4+mg
工=273K+40K=313K
7;=273K+r2
解得
Z2=118.25℃
(2)密封的氣體在限壓閥頂起至升溫到12CTC進行等壓變化,據(jù)蓋呂薩克定律
乜=匕
T2T,
\V=V2-VX
漏出的氣體的占氣孔1封閉后鍋內(nèi)氣體的百分比為
V-V
4==~LxlOO%
K
代入數(shù)據(jù)解得
77=0.50%
13.如圖甲所示,光滑且足夠長的平行金屬導軌MN、P。固定在同一水平面上,兩導
軌間距L=0.30mo導軌電阻忽略不計,其間連接有固定電阻R=0.40C.導軌上停放一
質量機=0.10kg、電阻r=0.20C的金屬桿",整個裝置處于磁感應強度3=0.50T的
勻強磁場中,磁場方向豎直向下。用一外力尸沿水平方向拉金屬桿而,使之由靜止開
始運動,電壓傳感器可將R兩端的電壓U即時采集并輸入電腦,獲得電壓U隨時間t
變化的關系如圖乙所示。
(1)試證明金屬桿做勻加速直線運動,并計算加速度的大?。?/p>
(2)求第2s末外力F的瞬時功率;
(3)如果水平外力從靜止開始拉動桿2s所做的功W=0.35J,求金屬桿上產(chǎn)生的焦耳
熱。
N
—X
電XXX
接m
XXX
電1JEE
傳uLY
腦
布XXXX
—
器
XXXX0
尸6
甲
【答案】⑴見解析;⑵0.35W;(3)0.05J
【解析】
【詳解】
(1)設路端電壓為U,金屬桿的運動速度為v,則感應電動勢電阻R兩端的電
壓
U=IR=^^
R+r
由圖乙可得
U=kt,D.lV/s
解得
ki(R+r)
v=-----------
BLR
因為速度與時間成正比,所以金屬桿做勻加速運動,加速度
”=32=im/s2
BLR
(2)在2s末,速度
V2=at=2n\/s
此時通過金屬桿的電流
E
R+r
金屬桿受安培力
F^=B/£=0.075N
設2s末外力大小為A,由牛頓第二定律:
F2-F行ma
故4s末時外力尸的瞬時功率。二尸2以,解得:
產(chǎn)二O.35W
(3)在2s末,桿的動能
2
Ek=-mv=0.2J
試卷第14頁,共58頁
由能量守恒定律,回路產(chǎn)生的焦耳熱:
。=W_&=0.35-0.2J=0.15J
又決=T故在金屬桿上產(chǎn)生的焦耳熱
Qr+R
。產(chǎn)0.05J
14.如圖甲所示,空間存在一寬度為2L的有界勻強磁場,磁場方向垂直紙面向里.在光
滑絕緣水平面內(nèi)有一邊長為L的正方形金屬線框,其質量相=lkg、電阻R=4O,在水
平向左的外力F作用下,以初速度%=4m/s勻減速進入磁場,線框平面與磁場垂直,外
力尸大小隨時間r變化的圖線如圖乙所示,以線框右邊剛進入磁場時開始計時,求:
(1)勻強磁場的磁感應強度
(2)線框進入磁場的過程中,通過線框的電荷量
(3)線框向右運動的最大位移為多少?
(4)當線框左側導線即將離開磁場的瞬間,撤去外力尸,則線框離開磁場過程中產(chǎn)生
的焦耳熱。多大?
:x
2L
甲
【答案】(1)0.33T;(2)0.75C;(3)4m;(4)—J
32
【解析】
【詳解】
(1)由F7圖象可知,線框加速度
a=丑=2m/s2
m
則線框的邊長
L==(4xl-gx2x『)m=3m
f=0時刻線框中的感應電流
/=也
R
線框所受的安培力
F殳=BIL
由牛頓第二定律
6+4=ma
又K=1N
聯(lián)立得
B=-T=0.33T
3
(2)線框進入磁場的過程中,平均感應電動勢
人笙
t
平均電流
1=1
R
通過線框的電荷量
q=It
聯(lián)立解得
q=0.75C
(3)設勻減速運動速度減為零的過程中線框通過的位移為工,由運動學公式得
—
0VQ=-2.CIX
代入數(shù)值得
x=4m
(4)當線框左邊導線到達磁場邊界時
v2=2a(x—L)
解得
v=2m/s
之后撤去外力尸,線框在安培力作用下減速,對線框,若減速到零,由動量定理得
—BIL\t=0—mv
其中
-EBLx'
一天"RNt
解得
x'=8m>L
說明線框能從磁場中離開
則有
試卷第16頁,共58頁
—BIL-N=tnvmv
-EBI}
解得
,5.
v=—m/s
4
所以線框離開磁場過程中產(chǎn)生的焦耳熱
八121,239,
Q=—mv——mv=-J
2232
15.如圖,容積均為V的汽缸A、B下端有細管(容積可忽略)連通,閥門K2位于細
管的中部,A、B的頂部各有一閥門K1、K3,B中有一可自由滑動的活塞(質量、體積
均可忽略)。初始時,三個閥門均打開,活塞在B的底部;關閉K2、K3,通過Ki給汽
缸充氣,使A中氣體的壓強達到大氣壓p。的3倍后關閉Ki。己知室溫為27℃,汽缸導
熱。
(1)打開K2,求穩(wěn)定時活塞上方氣體的體積和壓強;
(2)接著打開K3,求穩(wěn)定時活塞的位置;
(3)再緩慢加熱汽缸內(nèi)氣體使其溫度升高20℃,求此時活塞下方氣體的壓強。
V
【答案】(1),,2Po;(2)上升直到8的頂部;(3)1.6p0
【解析】
【詳解】
(1)設打開K2后,穩(wěn)定時活塞上方氣體的壓強為P/,體積為匕。依題意,被活塞分開的
兩部分氣體都經(jīng)歷等溫過程。由玻意耳定律得
對B有
Pov=PM
對于A有
(3p0)V=pl(2V-V1)
聯(lián)立式得
V
K=5,P\=2p0
(2)剛打開K3時,活塞上方氣體壓強變?yōu)榇髿鈮簭?,則活塞下方氣體壓強大,活塞將上
升。設活塞運動到頂部之前重新穩(wěn)定,令下方氣體與4中氣體的體積之和為V2(匕42V)。
由玻意耳定律得
(3%W=p°匕
得
V2=3V>2V
則打開心后活塞上會升直到B的頂部為止。
(3)活塞上升到B的頂部,令氣缸內(nèi)的氣體壓強為小,由玻意耳定律得
(3p0)V=p2-2V
設加熱后活塞下方氣體的壓強為內(nèi),氣體溫度從T/=300K升高到乃=320K的等容過程
中,由查理定律得
£1=A
聯(lián)立可得
P3=l.6po
16.如圖所示,開口向上豎直放置的內(nèi)壁光滑氣缸,其側壁是絕熱的,底部導熱,內(nèi)有
兩個質量均為的密閉活塞,活塞A導熱,活塞B絕熱,將缸內(nèi)理想氣體分成I、n
兩部分,初狀態(tài)整個裝置靜止不動且處于平衡狀態(tài),I、n兩部分氣體的高度均為4,
溫度為《,設外界大氣壓強為外保持不變,活塞橫截面積為s,且,"g=ZV,環(huán)境溫度
保持不變,若在活塞A上逐漸添加細沙,當細沙質量等于2小時,兩活塞在某位置重新
處于平衡,求活塞A下降的高度。
試卷第18頁,共58頁
【解析】
【詳解】
對I氣體有
初狀態(tài)
R=%+等=2死
末狀態(tài)
P\=Po+—^~=4po
J
由玻意耳定律得
p&s=【Rs
解得
4=1
對II氣體有
初狀態(tài)
。2=目+等=3%
末狀態(tài)
。;=。;+等=5為
由玻意耳定律得
P4S=p,2l2S
4=|/o
故A活塞下降的高度為
o
A/=(/0-/,)+(/()-Z2)=-Z0
17.如圖所示,在傾角為。的光滑斜面上有兩個用輕質彈簧相連接的物塊A、Bo它們
的質量分別為m小mB,彈簧的勁度系數(shù)為hC為一固定擋。系統(tǒng)處于靜止態(tài)?,F(xiàn)開始
用一恒力尸沿斜面方向拉物塊A使之向上運動,求物塊B剛要離開C時物塊A的加速
度。和從開始到此時物塊A的位移d,已知重力加速度為
[答案].T%+S)gsin0(/〃八十"s)gsine
啊k
【解析】
【詳解】
假設々表示未加F時彈簧的壓縮量,由胡克定律和共點力平衡條件可知
tn^gsin0=kx]
假設々表示B剛要離開C時彈簧的伸長量,由胡克定律和牛頓定律可知
kx2=/%gsin9
F-m^gsin0-kx2=m^a
聯(lián)立方程可得
_F-(%+%)gsin0
ci-----------------------------
由題意
4=X]+工2
解得
小("?A+%)gsin6
18.一物體從離地面80m高處下落做自由落體運動.重力加速度g取10m/s2,求:
(1)物體下落的總時間為多少?
(2)下落3s時離地面多高?
【答案】(l)4s;(2)35m。
【解析】
【詳解】
(1)根據(jù)〃=;g/得:落地的時間
2h2x80)
-------s=4s;
g10
(2)下落3s內(nèi)的位移
1,]
x3=—gty=-xlOx9m=45m,
則此時距離地面的高度
h'=h—/=80m-45m=35m。
19.如圖所示,開口向上、豎直放置的內(nèi)壁光滑氣缸的側壁是絕熱的,底部導熱,內(nèi)有
試卷第20頁,共58頁
兩個質量均為,〃的密閉活塞,活塞A導熱,活塞B絕熱,將缸內(nèi)理想氣體分成I、II
兩部分.初狀態(tài)整個裝置靜止不動處于平衡狀態(tài),I、II兩部分氣體的長度均為/。,溫
度為公?設外界大氣壓強為P。保持不變,活塞橫截面積為S,且2"?g=p'S,環(huán)境溫度保
持不變.
①在活塞A上逐漸添加鐵砂,當鐵砂質量等于2機時,兩活塞在某位置重新處于平衡狀
態(tài),求活塞B下降的高度;
②現(xiàn)只對II氣體緩慢加熱,使活塞A回到初始位置,求此時II氣體的溫度.
【答案】①0.33/。②2.1To
【解析】
【詳解】
①初狀態(tài):I氣體壓強
Pi=Po+攀
】[氣體壓強
Pi=P、+y=2Po
添加鐵砂后:I氣體壓強
,3mg入1
Pi=Po+-^-=2.5〃o
n氣體壓強
p;=p;+W=3p°
n氣體發(fā)生等溫變化,根據(jù)玻意耳定律:
P21oS=p.212s
B活塞下降的高度(12=10—12
帶入數(shù)據(jù)解得h2=O.33lo.
②I氣體發(fā)生等溫變化,根據(jù)玻意耳定律:
piloS—p'\hS
只對II氣體加熱,I氣體狀態(tài)不變,所以當A活塞回到原來位置時,I[氣體高度
根據(jù)理想氣體狀態(tài)方程
Pj°S_p'J[S
解得乃=2.1To.
20.利用沖擊擺測量速度的實驗,可以簡化為圖示模型,一質量M=0.8kg的小木塊,
用長L=0.8m的細繩懸掛在天花板上,處于靜止狀態(tài)。一質量〃?=0.2kg的小球以某一
水平速度射向木塊,小球與木塊相互作用時間極短,并嵌在木塊里,測得小球與木塊上
升最大高度為0.2m,小球、小木塊的大小與繩長相比可以忽略,不計空氣阻力,重力
加速度g=10m/s2。求:
(1)小球與木塊共速瞬時,小球和木塊共同速度v的大?。?/p>
(2)小球和木塊一起擺動過程中,細線受到的最大拉力T的大小;
(3)小球射入木塊的速度vo大小。
【答案】(l)2m/s(2)15N(3)10m/s
【解析】
【詳解】
(1)根據(jù)機械能守恒定律可得:
+m)v2=+m)gh
解得
v=2m/s
(2)小球與木塊共速時,細繩受到的拉力最大,設為7,選木塊和小球為研究對象
由牛頓第二定律得:
2
r-(M+")]
根據(jù)牛頓第三定律:T=T
解得
T=15N
⑶根據(jù)動量守恒定律得
試卷第22頁,共58頁
mvQ=^m+M)v
解得
21.貨車A正在公路上以20m/s的速度勻速行駛,因疲勞駕駛,司機注意力不集中,當
司機發(fā)現(xiàn)正前方有一輛靜止的轎車8時,兩車距離僅有75m。
(1)若此時B車立即以2m/s2的加速度啟動,通過計算判斷:如果A車司機沒有剎車,
是否會撞上8車;若不相撞,求兩車相距最近時的距離;若相撞,求出從A車發(fā)現(xiàn)8
車開始到撞上B車的時間。
(2)若A車司機發(fā)現(xiàn)B車,立即剎車(不計反應時間)做勻減速直線運動,加速度大小
為2m/s2(兩車均視為質點),為避免碰撞,在A車剎車的同時,B車立即做勻加速直線
運動(不計反應時間),問:B車加速度至少多大才能避免相撞。(這段公路很窄,無法靠
邊讓道)
【答案】(1)兩車會相撞5s(2)0.67m/s2
【解析】
【詳解】
(1)當兩車速度相等時,設經(jīng)過的時間為3則:
vA=vB
對8車
vB=at
聯(lián)立可得:
f=10s
A車的位移為:
xA=vAr=200m
B車的位移為:
xB=—at2—100m
因為xB+xo=175m<x4,所以兩車會相撞;設經(jīng)過時間/相撞,有:
vAt-xo+gat2
代入數(shù)據(jù)解得:
ti=5s,f2=15s(舍去)。
(2)已知4車的加速度大小a4=2m/s2,初速度vo=20m/s
設8車的加速度為8車運動經(jīng)過時間f,兩車相遇時,兩車速度相等,則有:
vA=vo-aAtt
vB=aBt
且
vA=vB
在時間,內(nèi)4車的位移為:
xA—vot-gaAt2
B車的位移為:
xB=;aBP
又
xB+xo—xA
聯(lián)立可得:
22
aB~0.67m/so(或2/3m/s)
22.我國月球探測計劃“嫦娥工程”已經(jīng)啟動,科學家對月球的探索會越來越深入。
(1)若已知地球半徑為R,地球表面的重力加速度為g,月球繞地球運動的周期為T,
月球繞地球的運動近似看作勻速圓周運動,試求出月球繞地球運動的軌道半徑。
(2)若宇航員隨登月飛船登陸月球后,在月球表面高度為八的某處以速度為水平拋出
一個小球,小球飛出的水平距離為X。已知月球半徑為引力常量為G,試求出月
球的質量
【答案】(1)J史工(2)也遛
V4/Gx2
【解析】
【詳解】
(1)設地球質量為M,根據(jù)萬有引力定律及向心力公式得:(丁=%(J
萬有引力等于重力:G^=mg
聯(lián)立解得:
V47r
(2)設月球表面處的重力加速度為,小球飛行時間為f
試卷第24頁,共58頁
根據(jù)題意得:X=VJ
下落高度:
M機,
萬有引力等于重力:G—^=m'g月
R?
聯(lián)立解得:
23.如圖所示,A、B為水平放置的間距占0.2m的兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度木制玩具設計與制造木工分包合同范本4篇
- 2025年度內(nèi)墻膩子施工技術培訓與推廣合同2篇
- 二零二五年度全國連鎖培訓學校股權合作框架合同
- 課題申報參考:岷江流域西南官話語法內(nèi)部差異及歷史演變研究
- 2025版二零二五年度教育信息化項目實施合同范本3篇
- 二零二五年度工業(yè)用地面積調(diào)整補充合同4篇
- 二零二五年度農(nóng)民工就業(yè)創(chuàng)業(yè)扶持政策合作協(xié)議2篇
- 2025年度國產(chǎn)嬰幼兒奶粉品牌全國分銷合同4篇
- 基于大數(shù)據(jù)分析的2025年度農(nóng)產(chǎn)品市場需求預測合同2篇
- 二零二五年度住宅室內(nèi)軟裝搭配合同4篇
- 《社區(qū)康復》課件-第三章 社區(qū)康復的實施
- 胰島素注射的護理
- 云南省普通高中學生綜合素質評價-基本素質評價表
- 2024年消防產(chǎn)品項目營銷策劃方案
- 聞道課件播放器
- 03軸流式壓氣機b特性
- 五星級酒店收入測算f
- 大數(shù)據(jù)與人工智能ppt
- 人教版八年級下冊第一單元英語Unit1 單元設計
- GB/T 9109.5-2017石油和液體石油產(chǎn)品動態(tài)計量第5部分:油量計算
- 邀請函模板完整
評論
0/150
提交評論