上海市北郊高級中學(xué)2024年高三上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
上海市北郊高級中學(xué)2024年高三上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
上海市北郊高級中學(xué)2024年高三上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
上海市北郊高級中學(xué)2024年高三上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
上海市北郊高級中學(xué)2024年高三上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

上海市北郊高級中學(xué)2024年高三上數(shù)學(xué)期末復(fù)習(xí)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.2.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值3.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.4.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間5.設(shè)命題:,,則為A., B.,C., D.,6.已知實數(shù)集,集合,集合,則()A. B. C. D.7.的展開式中的一次項系數(shù)為()A. B. C. D.8.已知集合,則()A. B.C. D.9.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.10.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.11.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.12.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.14.已知向量,,則______.15.(x+y)(2x-y)5的展開式中x3y3的系數(shù)為________.16.已知,,則與的夾角為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)是數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列中最小的項.18.(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.19.(12分)每年3月20日是國際幸福日,某電視臺隨機調(diào)查某一社區(qū)人們的幸福度.現(xiàn)從該社區(qū)群中隨機抽取18名,用“10分制”記錄了他們的幸福度指數(shù),結(jié)果見如圖所示莖葉圖,其中以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉.若幸福度不低于8.5分,則稱該人的幸福度為“很幸?!保?Ⅰ)求從這18人中隨機選取3人,至少有1人是“很幸福”的概率;(Ⅱ)以這18人的樣本數(shù)據(jù)來估計整個社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記表示抽到“很幸福”的人數(shù),求的分布列及.20.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.21.(12分)在一次電視節(jié)目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結(jié)果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現(xiàn)記“該選手答完n道題后總得分為”.(1)當(dāng)時,記,求的分布列及數(shù)學(xué)期望;(2)當(dāng),時,求且的概率.22.(10分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當(dāng)時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.2、C【解析】

采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.3、D【解析】

如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.4、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題5、D【解析】

直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.6、A【解析】

可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎(chǔ)題.7、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.8、B【解析】

先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學(xué)生的運算求解能力.9、B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.10、C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).11、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.12、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因為,所以,因為,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對應(yīng)此類問題的解題步驟,以及三角形形狀對應(yīng)的特征.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結(jié)果,需要掌握解題方法.14、【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.15、40【解析】

先求出的展開式的通項,再求出即得解.【詳解】設(shè)的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數(shù)為40.故答案為:40【點睛】本題主要考查二項式定理求指定項的系數(shù),意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】

根據(jù)已知條件,去括號得:,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由可得出,兩式作差可求得數(shù)列的通項公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數(shù)列的通項公式為;(2)由(1)得,則.當(dāng)時,,即,;當(dāng)時,,即,.所以,數(shù)列的最小項為.【點睛】本題考查利用與的關(guān)系求通項,同時也考查了利用數(shù)列的單調(diào)性求數(shù)列中的最小項,考查推理能力與計算能力,屬于中等題.18、(1)(2)證明見解析【解析】

(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時為增函數(shù),由此可得出答案;(2)由(1)知,,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論.【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時取等號),又(當(dāng)且僅當(dāng)時取等號),所以(當(dāng)且僅當(dāng)時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數(shù),且時為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應(yīng)用,屬于中檔題.19、(Ⅰ).(Ⅱ)見解析.【解析】

(Ⅰ)人中很幸福的有人,可以先計算其逆事件,即人都認(rèn)為不很幸福的概率,再用減去人都認(rèn)為不很幸福的概率即可;(Ⅱ)根據(jù)題意,隨機變量,列出分布列,根據(jù)公式求出期望即可.【詳解】(Ⅰ)設(shè)事件抽出的人至少有人是“很幸福”的,則表示人都認(rèn)為不很幸福(Ⅱ)根據(jù)題意,隨機變量,的可能的取值為;;;所以隨機變量的分布列為:所以的期望【點睛】本題考查了離散型隨機變量的概率分布列,數(shù)學(xué)期望的求解,概率分布中的二項分布問題,屬于常規(guī)題型.20、(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.21、(1)見解析,0(2)【解析】

(1)即該選手答完3道題后總得分,可能出現(xiàn)的情況為3道題都答對,答對2道答錯1道,答對1道答錯2道,3道題都答錯,進而求解即可;(2)當(dāng)時,即答完8題后,正確的題數(shù)為5題,錯誤的題數(shù)是3題,又,則第一題答對,第二題第三題至少有一道答對,進而求解.【詳解】解:(1)的取值可能為,,1,3,又因為,故,,,,所以的分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論