版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省興寧市沐彬中學高一數(shù)學第二學期期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列結論正確的是().A.若ac<bc,則a<b B.若a2<C.若a>b,c<0,則ac<bc D.若a<b2.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.33.在△ABC中,c=,A=75°,B=45°,則△ABC的外接圓面積為A. B.π C.2π D.4π4.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒,若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為()A. B. C. D.5.已知函數(shù)在區(qū)間上恒成立,則實數(shù)的最小值是()A. B. C. D.6.已知直三棱柱的所有棱長都相等,為的中點,則與所成角的余弦值為()A. B. C. D.7.已知數(shù)列的前4項依次為,1,,,則該數(shù)列的一個通項公式可以是()A. B.C. D.8.某學校美術室收藏有6幅國畫,分別為人物、山水、花鳥各2幅,現(xiàn)從中隨機抽取2幅進行展覽,則恰好抽到2幅不同種類的概率為()A. B. C. D.9.已知向量,,則與的夾角為()A. B. C. D.10.已知數(shù)列和數(shù)列都是無窮數(shù)列,若區(qū)間滿足下列條件:①;②;則稱數(shù)列和數(shù)列可構成“區(qū)間套”,則下列可以構成“區(qū)間套”的數(shù)列是()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)________12.若直線始終平分圓的周長,則的最小值為________13.從分別寫有1,2,3,4,5的五張卡片中,任取兩張,這兩張卡片上的數(shù)字之差的絕對值等于1的概率為________.14.若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是______.15.已知關于兩個隨機變量的一組數(shù)據(jù)如下表所示,且成線性相關,其回歸直線方程為,則當變量時,變量的預測值應該是_________.23456467101316.如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,則這個多面體最長的一條棱的長為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)當時,求數(shù)列前n項和;(用和n表示);(2)求.18.如圖,四邊形ABCD是平行四邊形,點E,F(xiàn),G分別為線段BC,PB,AD的中點.(1)證明:EF∥平面PAC;(2)證明:平面PCG∥平面AEF;(3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.19.已知三棱柱中,三個側面均為矩形,底面為等腰直角三角形,,點為棱的中點,點在棱上運動.(1)求證;(2)當點運動到某一位置時,恰好使二面角的平面角的余弦值為,求點到平面的距離;(3)在(2)的條件下,試確定線段上是否存在一點,使得平面?若存在,確定其位置;若不存在,說明理由.20.在中,角所對的邊為.已知面積(1)若求的值;(2)若,求的值.21.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】分析:根據(jù)不等式性質(zhì)逐一分析即可.詳解:A.若ac<bc,則a<b,因為不知道c的符號,故錯誤;B.若a2<可令a=-1,b=-2,則結論錯誤;D.若a<b,則點睛:考查不等式的基本性質(zhì),做此類題型最好的方法就是舉例子注意排除即可.屬于基礎題.2、A【解題分析】
利用余弦定理推論得出a,b,c關系,在結合正弦定理邊角互換列出方程,解出結果.【題目詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【題目點撥】本題考查正弦定理及余弦定理推論的應用.3、B【解題分析】
根據(jù)正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.【題目詳解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.設△ABC的外接圓半徑為R,則由正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.故選B.【題目點撥】本題主要考查正弦定理及余弦定理的應用以及三角形面積公式,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結合和、差、倍角的正余弦公式進行解答.4、B【解題分析】試題分析:因為紅燈持續(xù)時間為40秒,所以這名行人至少需要等待15秒才出現(xiàn)綠燈的概率為,故選B.【考點】幾何概型【名師點睛】對于幾何概型的概率公式中的“測度”要有正確的認識,它只與大小有關,而與形狀和位置無關,在解題時,要掌握“測度”為長度、面積、體積、角度等常見的幾何概型的求解方法.5、D【解題分析】
直接利用三角函數(shù)關系式的恒等變換,把函數(shù)的關系式變形為正弦型函數(shù),進一步利用恒成立問題的應用求出結果.【題目詳解】函數(shù),由因為,所以,即,當時,函數(shù)的最大值為,由于在區(qū)間上恒成立,故,實數(shù)的最小值是.故選:D【題目點撥】本題考查了兩角和的余弦公式、輔助角公式以及三角函數(shù)的最值,需熟記公式與三角函數(shù)的性質(zhì),同時考查了不等式恒成立問題,屬于基出題6、D【解題分析】
取的中點,連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【題目詳解】由題意,取的中點,連接,則,所以異面直線與所成角就是直線與所成角,設正三棱柱的各棱長為,則,設直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【題目點撥】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉化為相交直線所成的角是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、A【解題分析】
根據(jù)各選擇項求出數(shù)列的首項,第二項,用排除法確定.【題目詳解】可用排除法,由數(shù)列項的正負可排除B,D,再看項的絕對值,在C中不合題意,排除C,只有A.可選.故選:A.【題目點撥】本題考查數(shù)列的通項公式,已知數(shù)列的前幾項,選擇一個通項公式,比較方便,可以利用通項公式求出數(shù)列的前幾項,把不合的排除即得.8、B【解題分析】
算出基本事件的總數(shù)和隨機事件中基本事件的個數(shù),利用古典概型的概率的計算公式可求概率.【題目詳解】設為“恰好抽到2幅不同種類”某學校美術室收藏有6幅國畫,分別為人物、山水、花鳥各2幅,現(xiàn)從中隨機抽取2幅進行展覽,基本事件總數(shù),恰好抽到2幅不同種類包含的基本事件個數(shù),則恰好抽到2幅不同種類的概率為.故選B.【題目點撥】計算出所有的基本事件的總數(shù)及隨機事件中含有的基本事件的個數(shù),利用古典概型的概率計算即可.計數(shù)時應該利用排列組合的方法.9、D【解題分析】
利用夾角公式計算出兩個向量夾角的余弦值,進而求得兩個向量的夾角.【題目詳解】設兩個向量的夾角為,則,故.故選:D.【題目點撥】本小題主要考查兩個向量夾角的計算,考查向量數(shù)量積和模的坐標表示,屬于基礎題.10、C【解題分析】
直接利用已知條件,判斷選項是否滿足兩個條件即可.【題目詳解】由題意,對于A:,,∵,∴不成立,所以A不正確;對于B:由,,得不成立,所以B不正確;對于C:,∵,∴成立,并且也成立,所以C正確;對于D:由,,得,∴不成立,所以D不正確;故選:C.【題目點撥】本題考查新定義的理解和運用,考查數(shù)列的極限的求法,考查分析問題解決問題的能力及運算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.【題目詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查共軛復數(shù)的基本概念,是基礎題.12、9【解題分析】
平分圓的直線過圓心,由此求得的等量關系式,進而利用基本不等式求得最小值.【題目詳解】由于直線始終平分圓的周長,故直線過圓的圓心,即,所以.【題目點撥】本小題主要考查直線和圓的位置關系,考查利用基本不等式求最小值,屬于基礎題.13、【解題分析】
基本事件總數(shù)n,利用列舉法求出這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有4種情況,由此能求出這兩張卡片上的數(shù)字之差的絕對值等于1的概率.【題目詳解】從分別寫有1,2,3,4,5的五張卡片中,任取兩張,基本事件總數(shù)n,這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4種情況,∴這兩張卡片上的數(shù)字之差的絕對值等于1的概率為p.故答案為.【題目點撥】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.14、【解題分析】
令,可得,從而將問題轉化為和的圖象有兩個不同交點,作出圖形,可求出答案.【題目詳解】由題意,令,則,則和的圖象有兩個不同交點,作出的圖象,如下圖,是過點的直線,當直線斜率時,和的圖象有兩個交點.故答案為:.【題目點撥】本題考查函數(shù)零點問題,考查函數(shù)圖象的應用,考查學生的計算求解能力,屬于中檔題.15、21.2【解題分析】
計算出,,可知回歸方程經(jīng)過樣本中心點,從而求得,代入可得答案.【題目詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點,所以將,代入回歸直線方程中,得,所以當時,.【題目點撥】本題主要考查回歸方程的相關計算,難度很小.16、【解題分析】
試題分析:由三視圖知,幾何體是一個四棱錐,四棱錐的底面是一個正方形,邊長是2,四棱錐的一條側棱和底面垂直,且這條側棱長是2,這樣在所有的棱中,連接與底面垂直的側棱的頂點與相對的底面的頂點的側棱是最長的長度是,考點:三視圖點評:本題考查由三視圖還原幾何體,所給的是一個典型的四棱錐,注意觀察三視圖,看出四棱錐的一條側棱與底面垂直.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)時,時,;(2);【解題分析】
(1)當時,求出,再利用錯位相減法,求出的前項和;(2)求出的表達式,對,的大小進行分類討論,從而求出數(shù)列的極限.【題目詳解】(1)當時,可得,當時,得到,所以,當時,所以,兩邊同乘得上式減去下式得,所以所以綜上所述,時,;時,.(2)由(1)可知當時,則;當時,則若,若,所以綜上所述.【題目點撥】本題考查錯位相減法求數(shù)列的和,數(shù)列的極限,涉及分類討論的思想,屬于中檔題.18、(1)見解析(2)見解析(3)見解析【解題分析】
(1)證明,EF∥平面PAC即得證;(2)證明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得證;(3)設AE,GC與BD分別交于M,N兩點,證明N點為所找的H點.【題目詳解】(1)證明:∵E、F分別是BC,BP中點,∴,∵PC?平面PAC,EF?平面PAC,∴EF∥平面PAC.(2)證明:∵E、G分別是BC、AD中點,∴AE∥CG,∵AE?平面PCG,CG?平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC?平面PCG,EF?平面PCG,∴EF∥平面PCG,AE∩EF=E點,AE,EF?平面AEF,∴平面AEF∥平面PCG.(3)設AE,GC與BD分別交于M,N兩點,易知F,N分別是BP,BM中點,∴,∵PM?平面PGC,F(xiàn)N?平面PGC,∴FN∥平面PGC,即N點為所找的H點.【題目點撥】本題主要考查空間平行位置關系的證明,考查立體幾何的探究性問題的解決,意在考查學生對這些知識的理解掌握水平.19、(1)見解析;(2);(3)存在,為中點.【解題分析】
(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點建立坐標系,設E(m,0,2),要證A1C⊥AE,可證,只需證明,利用向量的數(shù)量積運算即可證明;(2)分別求出平面EA1D、平面A1DB的一個法向量,由兩法向量夾角余弦值的絕對值等于,解得m值,由此可得答案;(3)在(2)的條件下,設F(x,y,0),可知與平面A1DB的一個法向量平行,由此可求出點F坐標,進而求出||,即得答案.【題目詳解】(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點建立坐標系,設E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因為=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),設=(x,y,z)為平面EA1D的一個法向量,則即,?。剑?,m,﹣2m),=(2,0,﹣1),設=(x,y,z)為平面A1DB的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綜合性委托購票服務合同版B版
- 2024年綠色環(huán)保新材料研發(fā)與生產(chǎn)許可合同
- 2025年度智能辦公空間合租合同書3篇
- 2025版快遞快遞車租賃管理合同模板2篇
- 2025某公司研發(fā)部設計合同管理關鍵點
- 2024幼兒園教職工勞動合同與職業(yè)技能提升服務協(xié)議范本3篇
- 2024年貨物多式聯(lián)運合作協(xié)議3篇
- 2024醫(yī)療器械第三方檢測與認證服務合同6篇
- 2024年石漆采購協(xié)議3篇
- 2025年度市政設施保安勞務派遣服務協(xié)議3篇
- 2023-2024學年宜賓市數(shù)學九年級上冊期末考試試題(含解析)
- 清華大學《大學物理》習題庫試題及答案-08-電學習題答案
- 熱電廠檢修方案
- -年級組長述職報告(四篇合集)
- 2024年全國初中數(shù)學聯(lián)合競賽試題參考答案及評分標準
- 個人分析報告優(yōu)勢與劣勢
- 第五章-雙水相萃取技術
- 上級制度宣貫培訓方案
- 馬克思主義基本原理概論第六章
- 受警告處分后的思想?yún)R報
- 疼痛科護士的疼痛科病例分析和醫(yī)學討論
評論
0/150
提交評論