版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆北京師大附中數(shù)學高一下期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示(實線部分),若圖中小正方形的邊長均為1,則該幾何體的體積是()A. B. C. D.2.已知平面向量,,,,在下列命題中:①存在唯一的實數(shù),使得;②為單位向量,且,則;③;④與共線,與共線,則與共線;⑤若且,則.正確命題的序號是()A.①④⑤ B.②③④ C.①⑤ D.②③3.已知平面向量滿足:,,,若,則的值為()A. B. C.1 D.-14.一元二次不等式的解集為()A. B.C. D.5.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.6.函數(shù)的圖像()A.關(guān)于點對稱 B.關(guān)于點對稱C.關(guān)于直線對稱 D.關(guān)于直線對稱7.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.8.已知平面四邊形滿足,,,則的長為()A.2 B. C. D.9.已知函數(shù)的部分圖象如圖所示,則此函數(shù)的解析式為()A. B.C. D.10.已知單位向量,,滿足.若點在內(nèi),且,,則下列式子一定成立的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中國古代數(shù)學著作《算法統(tǒng)宗》有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人要走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后達到目的地.”則該人最后一天走的路程為__________里.12.下列說法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認為正確的序號全部寫上)13.某縣現(xiàn)有高中數(shù)學教師500人,統(tǒng)計這500人的學歷情況,得到如下餅狀圖,該縣今年計劃招聘高中數(shù)學新教師,只招聘本科生和研究生,使得招聘后該縣高中數(shù)學??茖W歷的教師比例下降到,且研究生的比例保持不變,則該縣今年計劃招聘的研究生人數(shù)為_______.14.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.15.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.16.=__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某中學高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學預賽成績選出某班的5名學生參加數(shù)學競賽決賽,已知這次預賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學生成績的平均分是83,乙班5名學生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個班中5名學生成績的方差、,并根據(jù)結(jié)果,你認為應該選派哪一個班的學生參加決賽?(2)從成績在85分及以上的學生中隨機抽取2名.求至少有1名來自甲班的概率.18.在中,分別是內(nèi)角所對的邊,已知.(1)求角;(2)若,求的周長.19.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):x24568y3040605070(1)若廣告費與銷售額具有相關(guān)關(guān)系,求回歸直線方程;(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求兩組數(shù)據(jù)其預測值與實際值之差的絕對值都不超過5的概率.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的長;(2)求△ABC的面積.21.已知數(shù)列中,..(1)寫出、、;(2)猜想的表達式,并用數(shù)學歸納法證明.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
由三視圖得出原幾何體是由半個圓錐與半個圓柱組成的組合體,并且由三視圖得出圓柱和圓錐的底面半徑,圓錐的高,圓柱的高,再由圓柱和圓錐的體積公式得解.【題目詳解】由三視圖可知,幾何體是由半個圓錐與半個圓柱組成的組合體,其中圓柱和圓錐的底面半徑,圓錐的高,圓柱的高所以圓柱的體積,圓錐的體積,所以組合體的體積.故選B.【題目點撥】本題主要考查空間幾何體的三視圖和空間幾何體圓柱和圓錐的體積,屬于基礎題.2、D【解題分析】
分別根據(jù)向量的平行、模、數(shù)量積即可解決。【題目詳解】當為零向量時不滿足,①錯;當為零向量時④錯,對于⑤:兩個向量相乘,等于模相乘再乘以夾角的余弦值,與有可能夾角不一樣或者的模不一樣,兩個向量相等要保證方向、模都相同才可以,因此選擇D【題目點撥】本題主要考查了向量的共線,零向量。屬于基礎題。3、C【解題分析】
將代入,化簡得到答案.【題目詳解】故答案選C【題目點撥】本題考查了向量的運算,意在考查學生的計算能力.4、C【解題分析】
根據(jù)一元二次不等式的解法,即可求得不等式的解集,得到答案.【題目詳解】由題意,不等式,即或,解得,即不等式的解集為,故選C.【題目點撥】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎題.5、A【解題分析】
根據(jù)圖象求出即可得到函數(shù)解析式.【題目詳解】顯然,因為,所以,所以,由得,所以,即,,因為,所以,所以.故選:A【題目點撥】本題考查了根據(jù)圖象求函數(shù)解析式,利用周期求,代入最高點的坐標求是解題關(guān)鍵,屬于基礎題.6、B【解題分析】
根據(jù)關(guān)于點對稱,關(guān)于直線對稱來解題.【題目詳解】解:令,得,所以對稱點為.當,為,故B正確;令,則對稱軸為,因此直線和均不是函數(shù)的對稱軸.故選:B【題目點撥】本題主要考查正弦函數(shù)的對稱性問題.正弦函數(shù)根據(jù)關(guān)于點對稱,關(guān)于直線對稱.7、B【解題分析】
根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結(jié)果.【題目詳解】由題意知:,則設向量與向量的夾角為則本題正確選項:【題目點撥】本題考查向量夾角的求解,關(guān)鍵是能夠通過平方運算將模長轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關(guān)系.8、B【解題分析】
先建系,再結(jié)合兩點的距離公式、向量的數(shù)量積及模的運算,求解即可得解.【題目詳解】解:建立如圖所示的平面直角坐標系,則,設,由,則,所以,又,所以,,即,故選:B.【題目點撥】本題考查了兩點的距離公式,重點考查了向量的數(shù)量積運算及模的運算,屬中檔題.9、B【解題分析】
由圖象可知,所以,又因為,所以所求函數(shù)的解析式為.10、D【解題分析】
設,對比得到答案.【題目詳解】設,則故答案為D【題目點撥】本題考查了向量的計算,意在考查學生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】分析:每天走的路形成等比數(shù)列{an},q=,S3=1.利用求和公式即可得出.詳解:每天走的路形成等比數(shù)列{an},q=,S3=1.∴S3=1=,解得a1=2.∴該人最后一天走的路程=a1q5==3.故答案為:3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于基礎題.12、③④【解題分析】
①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開后利用基本不等式可求出的最小值,進而判斷出該命題的正誤?!绢}目詳解】①由得,則,則,設,則,則,則上減函數(shù),則上為增函數(shù),則時,取得最小值,當時,,故的最大值為,錯誤;②若,則函數(shù),則,即函數(shù)的最大值為,無最小值,故錯誤;③若,滿足,則,則,由,得,則,當且僅當,即得,即時取等號,即的最小值為,故③正確;④,當且僅當,即,即時,取等號,即函數(shù)的最小值為,故④正確,故答案為:③④。【題目點撥】本題考查利用基本不等式來判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個條件,同時注意結(jié)合雙勾函數(shù)單調(diào)性來考查,屬于中等題。13、50【解題分析】
先計算出招聘后高中數(shù)學教師總?cè)藬?shù),然后利用比例保持不變,得到該縣今年計劃招聘的研究生人數(shù).【題目詳解】招聘后該縣高中數(shù)學??茖W歷的教師比例下降到,則招聘后,該縣高中數(shù)學教師總?cè)藬?shù)為,招聘后研究生的比例保持不變,該縣今年計劃招聘的研究生人數(shù)為.【題目點撥】本題主要考查學生的閱讀理解能力和分析能力,從題目中提煉關(guān)鍵字眼“比例保持不變”是解題的關(guān)鍵.14、【解題分析】
時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【題目詳解】當時,,當時,=,又時,不適合,所以.【題目點撥】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.15、2【解題分析】
由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【題目詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【題目點撥】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.16、2【解題分析】由對數(shù)的運算性質(zhì)可得到,故答案為2.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(3)甲班參加;(4).【解題分析】
試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應該選派甲班的學生參加決賽.(4)成績在85分及以上的學生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學成績更加穩(wěn)定,故應選甲班參加.(4)分及以上甲班有人,設為;乙班有人,設為,從這人中抽取人的選法有:,共種,其中甲班至少有名學生的選法有種,則甲班至少有名學生被抽到的概率為.考點:3.古典概型及其概率計算公式;4.莖葉圖.18、(1)(2)6【解題分析】
(1)由條件利用正弦定理求B的某個函數(shù)值,結(jié)合B的范圍確定B的大小.(2)由(1)及求得ac,再利用余弦定理可得.【題目詳解】解:(1)因為,由正弦定理可得,又,所以,則,因為,所以;(2)由已知,所以,由余弦定理得,所以,則,因此的周長為6.【題目點撥】本題考查正弦定理、余弦定理及三角形面積計算,有時利用整體運算可以起到事半功倍的作用,考查計算能力,屬于中檔題.19、(1);(2).【解題分析】
(1)首先求出x,y的平均數(shù),利用最小二乘法做出線性回歸方程的系數(shù),根據(jù)樣本中心點滿足線性回歸方程,代入已知數(shù)據(jù)求出a的值,寫出線性回歸方程.(2)由古典概型列舉基本事件求解即可【題目詳解】(1),因此,所求回歸直線方程為:.(2)x24568y304060507030.543.55056.569.5基本事件:共10個,兩組數(shù)據(jù)其預測值與實際值之差的絕對值都不超過5:共3個所以兩組數(shù)據(jù)其預測值與實際值之差的絕對值都超過5的概率為.【題目點撥】本題考查回歸分析的初步應用,考查求線性回歸方程,考查古典概型,是基礎題20、(1)(2)21【解題分析】
(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面積公式,即可求解.【題目詳解】(1)由題意,因為,且為三角形的內(nèi)角,所以,由正弦定理,可得,即,解得.(2)由(1)和,則,由三角形的面積公式,可得.【題目點撥】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關(guān)三角形的題目時,要抓住題設條件和利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物業(yè)與業(yè)主社區(qū)養(yǎng)老服務體系合同3篇
- 二零二五版高速公路監(jiān)控系統(tǒng)集成采購與安裝合同2篇
- 2025版定制化鐵藝工程勞務分包服務合同3篇
- 安徽省高三上學期校聯(lián)考化學試卷及答案(含答案解析)
- 二零二五年度木地板產(chǎn)品回收與再利用合同3篇
- 動漫產(chǎn)業(yè)法律法規(guī)與版權(quán)保護考核試卷
- 城市規(guī)劃與城市能源結(jié)構(gòu)調(diào)整考核試卷
- 塑料加工過程中的物料管理與優(yōu)化考核試卷
- 二零二五版養(yǎng)老設施建設項目合伙承包合同樣本3篇
- 2025年度某某酒店電梯設施維護保養(yǎng)合同2篇
- 勞務協(xié)議范本模板
- 2025大巴車租車合同范文
- 老年上消化道出血急診診療專家共識2024
- 人教版(2024)數(shù)學七年級上冊期末測試卷(含答案)
- 2024年國家保密培訓
- 磚廠承包合同簽訂轉(zhuǎn)讓合同
- 思政課國內(nèi)外研究現(xiàn)狀分析
- 皮膚感染的護理診斷與護理措施
- 2023年公務員多省聯(lián)考《申論》題(廣西B卷)
- EPC總承包項目中的質(zhì)量管理體系
- 高中物理考試成績分析報告
評論
0/150
提交評論