2024屆江蘇省蘇州五中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第1頁
2024屆江蘇省蘇州五中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第2頁
2024屆江蘇省蘇州五中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第3頁
2024屆江蘇省蘇州五中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第4頁
2024屆江蘇省蘇州五中高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省蘇州五中高一數(shù)學第二學期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是函數(shù)的部分圖象,則下列命題中,正確的命題序號是①函數(shù)的最小正周期為②函數(shù)的振幅為③函數(shù)的一條對稱軸方程為④函數(shù)的單調(diào)遞增區(qū)間是⑤函數(shù)的解析式為A.③⑤ B.③④ C.④⑤ D.①③2.一個扇形的弧長與面積都是3,則這個扇形圓心角的弧度數(shù)為()A. B. C. D.3.閱讀如圖的程序框圖,運行該程序,則輸出的值為()A.3 B.1C.-1 D.04.下列函數(shù)中最小正周期為的是()A. B. C. D.5.化簡結(jié)果為()A. B. C. D.6.若直線經(jīng)過點,則此直線的傾斜角是()A. B. C. D.7.已知,是兩個不同的平面,給出下列四個條件:①存在一條直線,使得,;②存在兩條平行直線,,使得,,,;③存在兩條異面直線,,使得,,,;④存在一個平面,使得,.其中可以推出的條件個數(shù)是()A.1 B.2 C.3 D.48.已知圓C的半徑為2,在圓內(nèi)隨機取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.9.設(shè)某曲線上一動點到點的距離與到直線的距離相等,經(jīng)過點的直線與該曲線相交于,兩點,且點恰為等線段的中點,則()A.6 B.10 C.12 D.1410.已知等差數(shù)列的公差d>0,則下列四個命題:①數(shù)列是遞增數(shù)列;②數(shù)列是遞增數(shù)列;③數(shù)列是遞增數(shù)列;④數(shù)列是遞增數(shù)列;其中正確命題的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則__________.12.已知函數(shù),則______.13.已知,是夾角為的兩個單位向量,向量,,若,則實數(shù)的值為________.14.已知sin+cosα=,則sin2α=__15.已知,,且,則的最小值為________.16.在數(shù)列中,已知,,記為數(shù)列的前項和,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求點到平面的距離.18.已知(1)化簡;(2)若,求的值.19.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)若方程在有兩個不同的實根,求的取值范圍.20.已知向量,的夾角為,且,.(1)求;(2)求.21.設(shè)向量,,其中,,且.(1)求實數(shù)的值;(2)若,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

根據(jù)圖象求出函數(shù)解析式,根據(jù)三角函數(shù)型函數(shù)的性質(zhì)逐一判定.【題目詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數(shù)的單調(diào)遞增區(qū)間是,故錯;故選:A【題目點撥】本題主要考查了根據(jù)圖象求正弦型函數(shù)函數(shù)的解析式,及正弦型函數(shù)的性質(zhì),屬于中檔題.2、B【解題分析】

根據(jù)扇形的弧長與面積公式,代入已知條件即可求解.【題目詳解】設(shè)扇形的弧長為,面積為,半徑為,圓心角弧度數(shù)為由定義可得,代入解得rad故選:B【題目點撥】本題考查了扇形的弧長與面積公式應(yīng)用,屬于基礎(chǔ)題.3、D【解題分析】

從起始條件、開始執(zhí)行程序框圖,直到終止循環(huán).【題目詳解】,,,,,輸出.【題目點撥】本題是直到型循環(huán),只要滿足判斷框中的條件,就終止循環(huán),考查讀懂簡單的程序框圖.4、C【解題分析】

對A選項,對賦值,即可判斷其最小正周期不是;利用三角函數(shù)的周期公式即可判斷B、D的最小正周期不是,問題得解.【題目詳解】對A選項,令,則,不滿足,所以不是以為周期的函數(shù),其最小正周期不為;對B選項,的最小正周期為:;對D選項,的最小正周期為:;排除A、B、D故選C【題目點撥】本題主要考查了三角函數(shù)的周期公式及周期函數(shù)的定義,還考查了賦值法,屬于基礎(chǔ)題.5、A【解題分析】

根據(jù)指數(shù)冪運算法則進行化簡即可.【題目詳解】本題正確選項:【題目點撥】本題考查指數(shù)冪的運算,屬于基礎(chǔ)題.6、D【解題分析】

先通過求出兩點的斜率,再通過求出傾斜角的值。【題目詳解】,選D.【題目點撥】先通過求出兩點的斜率,再通過求出傾斜角的值。需要注意的是斜率不存在的情況。7、B【解題分析】當,不平行時,不存在直線與,都垂直,,,故正確;存在兩條平行直線,,,,,,則,相交或平行,所以不正確;存在兩條異面直線,,,,,,由面面平行的判定定理得,故正確;存在一個平面,使得,,則,相交或平行,所以不正確;故選8、B【解題分析】

先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【題目詳解】如圖所示:當時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【題目點撥】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.9、B【解題分析】由曲線上一動點到點的距離與到直線的距離相等知該曲線為拋物線,其方程為,分別過點向拋物線的準線作垂線,垂足分別為,由梯形的中位線定理知,所以,故選B.10、B【解題分析】

對于各個選項中的數(shù)列,計算第n+1項與第n項的差,看此差的符號,再根據(jù)遞增數(shù)列的定義得出結(jié)論.【題目詳解】設(shè)等差數(shù)列,d>0∵對于①,n+1﹣n=d>0,∴數(shù)列是遞增數(shù)列成立,是真命題.對于②,數(shù)列,得,,所以不一定是正實數(shù),即數(shù)列不一定是遞增數(shù)列,是假命題.對于③,數(shù)列,得,,不一定是正實數(shù),故是假命題.對于④,數(shù)列,故數(shù)列是遞增數(shù)列成立,是真命題.故選:B.【題目點撥】本題考查用定義判斷數(shù)列的單調(diào)性,考查學生的計算能力,正確運用遞增數(shù)列的定義是關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

先利用輔助角公式將函數(shù)的解析式化簡,根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計算出的值.【題目詳解】,由題意可得,因此,,故答案為.【題目點撥】本題考查輔助角公式化簡、三角函數(shù)圖象變換,在三角圖象相位變換的問題中,首先應(yīng)該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進行加減,考查計算能力,屬于中等題.12、【解題分析】

根據(jù)題意令f(x)=,求出x的值,即可得出f﹣1()的值.【題目詳解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案為:﹣.【題目點撥】本題考查了反函數(shù)以及反正弦函數(shù)的應(yīng)用問題,屬于基礎(chǔ)題.13、【解題分析】

由題意得,且,,由=,解得即可.【題目詳解】已知,是夾角為的兩個單位向量,所以,得,若解得故答案為【題目點撥】本題考查了向量數(shù)量積的運算性質(zhì),考查了計算能力,屬于基礎(chǔ)題.14、【解題分析】∵,∴即,則.故答案為:.15、【解題分析】

由,可得,然后利用基本不等式可求出最小值.【題目詳解】因為,所以,當且僅當,時取等號.【題目點撥】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.16、【解題分析】

根據(jù)數(shù)列的遞推公式求出該數(shù)列的前幾項,找出數(shù)列的周期性,從而求出數(shù)列的前項和的值.【題目詳解】對任意的,,.則,,,,,,所以,.,且,,故答案為:.【題目點撥】本題考查數(shù)列遞推公式的應(yīng)用,考查數(shù)列周期性的應(yīng)用,解題時要結(jié)合遞推公式求出數(shù)列的前若干項,找出數(shù)列的規(guī)律,考查推理能力和計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】

(1)作為棱的中點,連結(jié),,通過證明平面可得.(2)根據(jù)等體積法:可求得.【題目詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結(jié),,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分別為,的中點,∴,∴.又,∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴.又∵平面平面,且平面平面,平面,∴平面.∴.設(shè)點到平面,的距離.在中,,,則.又∵,∴,則.【題目點撥】本題考查了直線與平面垂直的判定與性質(zhì),考查了等體積法求點面距,屬于中檔題.18、(1);(2)【解題分析】

(1)直接利用誘導公式化簡求解即可;(2)由(1)可求出,然后利用同角三角函數(shù)的基本關(guān)系式將化成只含有的表達式,代入即可求解.【題目詳解】(1)(2)因為,所以,由于將代入,得【題目點撥】本題主要考查誘導公式以及同角三角函數(shù)基本關(guān)系式的應(yīng)用,意在考查學生的數(shù)學建模能力和運算能力.19、(1)最小正周期,;(2).【解題分析】

(1)利用兩角差的余弦公式、倍角公式、輔助角公式得,求得周期;(2)利用換元法令,將問題轉(zhuǎn)化成方程在有兩個不同的實根,再利用圖象得的取值范圍.【題目詳解】(1),所以的最小正周期,由得:,所以的單調(diào)遞增區(qū)間是.(2)令,因為,所以,即方程在有兩個不同的實根,由函數(shù)的圖象可知,當時滿足題意,所以的取值范圍為.【題目點撥】第(1)問考查三角恒等變換的綜合運用;第二問考查換元法求參數(shù)的取值范圍,注意在換元的過程中參數(shù)不能出錯,否則轉(zhuǎn)化后的問題與原問題就不等價.20、(1)1;(2)【解題分析】

(1)利用向量數(shù)量積的定義求解;(2)先求模長的平方,再進行開方可得.【題目詳解】(1)?=||||cos60°=2×1×=1;(2)|+|2=(+)2=+2?+=4+2×1+1=7.所以|+|=.【題目點撥】本題主要考查平面向量數(shù)量積的定義及向量模長的求解,一般地,求解向量模長時,先把模長平方,化為數(shù)量積運算進行求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論