版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆四川省成都市高中數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.點(diǎn)M(4,m)關(guān)于點(diǎn)N(n,-3)的對(duì)稱點(diǎn)為P(6,-9)則()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=52.()A. B. C. D.3.已知正方體的個(gè)頂點(diǎn)中,有個(gè)為一側(cè)面是等邊三角形的正三棱錐的頂點(diǎn),則這個(gè)正三棱錐與正方體的全面積之比為()A. B. C. D.4.干支紀(jì)年法是中國(guó)歷法上自古以來(lái)就一直使用的紀(jì)年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、廢、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按順序配對(duì),周而復(fù)始,循環(huán)記錄.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,則數(shù)學(xué)王子高斯出生的1777年是干支紀(jì)年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年5.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.6.在中,角A,B,C的對(duì)邊分別為a,b,c.若,則一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形7.已知兩條直線m,n,兩個(gè)平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β8.若,,,則的最小值為()A. B. C. D.9.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且僅有兩個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.10.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若兩個(gè)向量與的夾角為,則稱向量“”為向量的“外積”,其長(zhǎng)度為.若已知,,,則.12.已知sin+cosα=,則sin2α=__13.等比數(shù)列的首項(xiàng)為,公比為,記,則數(shù)列的最大項(xiàng)是第___________項(xiàng).14.在中,,點(diǎn)在邊上,若,的面積為,則___________15.函數(shù),的反函數(shù)為_(kāi)_________.16.已知正方體的棱長(zhǎng)為,點(diǎn)、分別為、的中點(diǎn),則點(diǎn)到平面的距離為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角的對(duì)邊分別為,且角成等差數(shù)列.(1)求角的值;(2)若,求邊的長(zhǎng).18.已知數(shù)列的前項(xiàng)和為,,.(1)求數(shù)列的通項(xiàng)公式;(2)在數(shù)列中,,其前項(xiàng)和為,求的取值范圍.19.手機(jī)支付也稱為移動(dòng)支付,是指允許移動(dòng)用戶使用其移動(dòng)終端(通常是手機(jī))對(duì)所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類(lèi)支付、網(wǎng)絡(luò)支付后,手機(jī)支付儼然成為新寵.某金融機(jī)構(gòu)為了了解移動(dòng)支付在大眾中的熟知度,對(duì)15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問(wèn)題是“你會(huì)使用移動(dòng)支付嗎?”其中,回答“會(huì)”的共有100個(gè)人,把這100個(gè)人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.組數(shù)第l組第2組第3組第4組第5組分組頻數(shù)203630104(1)求;(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來(lái)自同一個(gè)組的概率.20.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.21.設(shè)數(shù)列的前項(xiàng)和為,對(duì)于,,其中是常數(shù).(1)試討論:數(shù)列在什么條件下為等比數(shù)列,請(qǐng)說(shuō)明理由;(2)設(shè),且對(duì)任意的,有意義,數(shù)列的前項(xiàng)和為.若,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】因?yàn)辄c(diǎn)M,P關(guān)于點(diǎn)N對(duì)稱,所以由中點(diǎn)坐標(biāo)公式可知.2、B【解題分析】
根據(jù)誘導(dǎo)公式和兩角和的余弦公式的逆用變形即可得解.【題目詳解】由題:故選:B【題目點(diǎn)撥】此題考查兩角和的余弦公式的逆用,關(guān)鍵在于熟記相關(guān)公式,準(zhǔn)確化簡(jiǎn)求值.3、A【解題分析】所求的全面積之比為:,故選A.4、C【解題分析】
天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,按照這個(gè)規(guī)律進(jìn)行推理,即可得到結(jié)果.【題目詳解】由題意,天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,1994年是甲戌年,則1777的天干為丁,地支為酉,故選:C.【題目點(diǎn)撥】本題主要考查了等差數(shù)列的定義及等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中認(rèn)真審題,合理利用等差數(shù)列的定義,以及等差數(shù)列的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、B【解題分析】
根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結(jié)果.【題目詳解】由題意知:,則設(shè)向量與向量的夾角為則本題正確選項(xiàng):【題目點(diǎn)撥】本題考查向量夾角的求解,關(guān)鍵是能夠通過(guò)平方運(yùn)算將模長(zhǎng)轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關(guān)系.6、D【解題分析】
根據(jù)正弦定理得到,計(jì)算得到答案.【題目詳解】,則,即.故或,即.故選:.【題目點(diǎn)撥】本題考查了根據(jù)正弦定理判斷三角形形狀,意在考查學(xué)生的應(yīng)用能力.7、D【解題分析】
在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【題目詳解】由兩條直線m,n,兩個(gè)平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯(cuò)誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯(cuò)誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯(cuò)誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點(diǎn)評(píng)】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.8、B【解題分析】
根據(jù)題意,得出,利用基本不等式,即可求解,得到答案.【題目詳解】由題意,因?yàn)?,則當(dāng)且僅當(dāng)且即時(shí)取得最小值.故選B.【題目點(diǎn)撥】本題主要考查了利用基本不等式求最小值問(wèn)題,其中解答中合理化簡(jiǎn),熟練應(yīng)用基本不等式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.9、C【解題分析】
寫(xiě)出變換后的函數(shù)解析式,,,結(jié)合正弦函數(shù)圖象可分析得:要使函數(shù)有且僅有兩個(gè)零點(diǎn),只需,即可得解.【題目詳解】由題,根據(jù)變換關(guān)系可得:,函數(shù)在區(qū)間上有且僅有兩個(gè)零點(diǎn),,,根據(jù)正弦函數(shù)圖象可得:,解得:.故選:C【題目點(diǎn)撥】此題考查函數(shù)圖象的平移和伸縮變換,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍.10、B【解題分析】
利用角的關(guān)系,再利用兩角差的正切公式即可求出的值.【題目詳解】因?yàn)?,且為銳角,則,所以,因?yàn)?,所以故選B.【題目點(diǎn)撥】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關(guān)系,屬于中檔題.對(duì)于給值求值問(wèn)題,關(guān)鍵是尋找已知角(條件中的角)與未知角(問(wèn)題中的角)的關(guān)系,用已知角表示未知角,從而將問(wèn)題轉(zhuǎn)化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導(dǎo)公式即可求出.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】
故答案為3.【點(diǎn)評(píng)】本題主要考查以向量的數(shù)量積為載體考查新定義,利用向量的數(shù)量積轉(zhuǎn)化是解決本題的關(guān)鍵,12、【解題分析】∵,∴即,則.故答案為:.13、【解題分析】
求得,則可將問(wèn)題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【題目詳解】由等比數(shù)列的通項(xiàng)公式可得,,則問(wèn)題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時(shí),取得最大值,此時(shí)為偶數(shù).因此,的最大項(xiàng)是第項(xiàng).故答案為:.【題目點(diǎn)撥】本題考查等比數(shù)列前項(xiàng)積最值的計(jì)算,將問(wèn)題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.14、【解題分析】
由,的面積為可以求解出三角形,再通過(guò),我們可以得出(兩三角形等高)再利用正弦形式表示各自面積,即能得出的值.【題目詳解】,的面積為,所以為等邊三角形,又所以(等高),又所以填寫(xiě)2【題目點(diǎn)撥】已知三角形面積及一邊一角,我們能把形成該角的另外一邊算出,從而把三角形所有量都能計(jì)算出來(lái)(如果需要),求兩角正弦值的比值,我們更多聯(lián)想到正弦定理的公式,或面積公式.15、【解題分析】
將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【題目詳解】因?yàn)椋裕瑒t反函數(shù)為:且.【題目點(diǎn)撥】本題考查反三角函數(shù)的知識(shí),難度較易.給定定義域的時(shí)候,要注意函數(shù)定義域.16、【解題分析】
作出圖形,取的中點(diǎn),連接,證明平面,可知點(diǎn)平面的距離等于點(diǎn)到平面的距離,然后利用等體積法計(jì)算出點(diǎn)到平面的距離,即為所求.【題目詳解】如下圖所示,取的中點(diǎn),連接,在正方體中,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點(diǎn)平面的距離等于點(diǎn)到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設(shè)點(diǎn)到平面的距離為,則,.故答案為:.【題目點(diǎn)撥】本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2)【解題分析】
(1)根據(jù)等差數(shù)列的性質(zhì),與三角形三內(nèi)角和等于即可解出角C的值.(2)將已知數(shù)帶入角C的余弦公式,即可解出邊c.【題目詳解】解:(1)∵角,,成等差數(shù)列,且為三角形的內(nèi)角,∴,,∴.(2)由余弦定理,得【題目點(diǎn)撥】本題考查等差數(shù)列、余弦定理,屬于基礎(chǔ)題.18、(1).(2)【解題分析】
(1)根據(jù)已知的等式,再寫(xiě)一個(gè)關(guān)于等式,利用求通項(xiàng)公式;(2)利用裂項(xiàng)相消法求解,再根據(jù)單調(diào)性以及求解的取值范圍.【題目詳解】解:(1)當(dāng)時(shí),,,兩式相減得整理得,即,又,,,則,當(dāng)時(shí),,所以.(2),則,.又,所以數(shù)列單調(diào)遞增,當(dāng)時(shí),最小值為,又因?yàn)椋缘娜≈捣秶鸀椋绢}目點(diǎn)撥】當(dāng),且是等差數(shù)列且,則的前項(xiàng)和可用裂項(xiàng)相消法求解:.19、(1);(2)第1組2人,第3組3人,第4組1人;(3)【解題分析】
(1)直接計(jì)算.(2)根據(jù)分層抽樣的規(guī)律按照比例抽取.(3)設(shè)第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,排列出所有可能,再計(jì)算滿足條件的個(gè)數(shù),相除得到答案.【題目詳解】解:(1)由題意可知,,(2)第1,3,4組共有60人,所以抽取的比例是則從第1組抽取的人數(shù)為,從第3組抽取的人數(shù)為,從第4組抽取的人數(shù)為;(3)設(shè)第1組抽取的2人為,,第3組抽取的3人為,,,第4組抽取的1人為,則從這6人中隨機(jī)抽取2人有如下種情形:,,,,,,,,,,,,,,共有15個(gè)基本事件.其中符合“抽取的2人來(lái)自同一個(gè)組”的基本事件有,,,共4個(gè)基本事件,所以抽取的2人來(lái)自同一個(gè)組的概率.【題目點(diǎn)撥】本題考查了頻率直方圖,分層抽樣,概率的計(jì)算,意在考查學(xué)生解決問(wèn)題的能力.20、(Ⅰ)(Ⅱ)().【解題分析】試題分析:(Ⅰ)運(yùn)用兩角和的正弦公式對(duì)f(x)化簡(jiǎn)整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調(diào)遞增區(qū)間對(duì)應(yīng)求解即可.試題解析:(Ⅰ)因?yàn)?,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調(diào)遞增區(qū)間為().由,得.所以的單調(diào)遞增區(qū)間為().【考點(diǎn)】?jī)山呛偷恼夜?、周期公式、三角函?shù)的單調(diào)性.【名師點(diǎn)睛】三角函數(shù)的單調(diào)性:1.三角函數(shù)單調(diào)區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標(biāo)準(zhǔn)式,然后通過(guò)同解變形或利用數(shù)形結(jié)合方法求解.關(guān)于復(fù)合函數(shù)的單調(diào)性的求法;2.利用三角函數(shù)的單調(diào)性比較兩個(gè)同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調(diào)區(qū)間內(nèi),不屬于的,可先化至同一單
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16823:2025 EN Non-destructive testing - Ultrasonic testing - Through-transmission technique
- 2024年音視頻線供貨3篇
- 步行街花崗巖安裝協(xié)議
- 兒童玩具業(yè)務(wù)員招聘協(xié)議
- 汽車(chē)配件租賃合同
- 食品召回的企業(yè)文化塑造
- 通信保障臨時(shí)用電管理辦法
- 摩托車(chē)店大門(mén)地彈門(mén)施工合同
- 動(dòng)物福利愛(ài)心基金管理辦法
- 室內(nèi)裝修安裝合同樣本
- 校招面試官培訓(xùn)課件
- 資產(chǎn)管理基礎(chǔ)知識(shí)
- 醫(yī)院采購(gòu)遴選方案
- GB/T 7260.1-2023不間斷電源系統(tǒng)(UPS)第1部分:安全要求
- 對(duì)外開(kāi)放與國(guó)際合作概述
- 2023年青協(xié)活動(dòng)總結(jié)報(bào)告
- 提升供應(yīng)鏈效率:年度運(yùn)營(yíng)計(jì)劃
- 展覽館維修維護(hù)投標(biāo)方案
- 陳赫賈玲小品《歡喜密探》臺(tái)詞劇本
- 2023招聘專(zhuān)員個(gè)人年終總結(jié)
- 機(jī)房搬遷服務(wù)投標(biāo)方案(技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論