版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省莆田市第九中學2024屆數(shù)學高一第二學期期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.△中,已知,,,如果△有兩組解,則的取值范圍()A. B. C. D.2.如果直線m//直線n,且m//平面α,那么n與αA.相交 B.n//α C.n?α3.在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關(guān)于x的方程有實數(shù)根的概率為()A. B. C. D.4.下列四個函數(shù)中,以為最小正周期,且在區(qū)間上為減函數(shù)的是()A. B. C. D.5.擲兩顆均勻的骰子,則點數(shù)之和為5的概率等于()A. B. C. D.6.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織()尺布.A. B. C. D.7.若實數(shù)滿足約束條件則的最大值與最小值之和為()A. B. C. D.8.直線(,)過點(-1,-1),則的最小值為()A.9 B.1 C.4 D.109.不論為何值,直線恒過定點A. B. C. D.10.對一切,恒成立,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.化簡:________12.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值等于________.13.已知直線l與圓C:交于A,B兩點,,則滿足條件的一條直線l的方程為______.14.已知向量、滿足||=2,且與的夾角等于,則||的最大值為_____.15.計算:______.16.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.中,內(nèi)角,,所對的邊分別是,,,已知.(1)求角的大?。唬?)設(shè),的面積為,求的值.18.設(shè)函數(shù).(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實數(shù)的取值范圍.19.解關(guān)于x的不等式20.已知函數(shù).(1)解關(guān)于的不等式;(2)若關(guān)于的不等式的解集為,求實數(shù)的值.21.已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和,求證:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】由正弦定理得A+C=180°-60°=120°,
由題意得:A有兩個值,且這兩個值之和為180°,
∴利用正弦函數(shù)的圖象可得:60°<A<120°,
若A=90,這樣補角也是90°,一解,不合題意,<sinA<1,
∵x=sinA,則2<x<故選D2、D【解題分析】
利用直線與平面平行的判定定理和直線與平面平行的性質(zhì)進行判斷即可.【題目詳解】∵直線m/直線n,且m/平面∴當n不在平面α內(nèi)時,平面α內(nèi)存在直線m'//m?n//m',符合線面平行的判定定理可得n/平面α當n在平面α內(nèi)時,也符合條件,n與α的位置關(guān)系是n//α或【題目點撥】本題主要考查線面平行的判定定理以及線面平行的性質(zhì),意在考查對基本定理掌握的熟練程度,屬于基礎(chǔ)題.3、C【解題分析】
由關(guān)于x的方程有實數(shù)根,求得,再結(jié)合長度比的幾何概型,即可求解,得到答案.【題目詳解】由題意,關(guān)于x的方程有實數(shù)根,則滿足,解得,所以在區(qū)間內(nèi)隨機取一個實數(shù)a,使得關(guān)于x的方程有實數(shù)根的概率為.故選:C.【題目點撥】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應(yīng)的“幾何度量”,再求出總的基本事件對應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、B【解題分析】
由條件利用三角函數(shù)的周期性和單調(diào)性,判斷各個選項是否正確,即可求得答案.【題目詳解】對于A,因為的周期為,故A錯誤;對于B,因為|以為最小正周期,且在區(qū)間上為減函數(shù),故B正確;對于C,因為的周期為,故C錯誤;對于D,因為區(qū)間上為增函數(shù),故D錯誤.故選:B.【題目點撥】本題主要考查了判斷三角函數(shù)的周期和在指定區(qū)間上的單調(diào)性,解題關(guān)鍵是掌握三角函數(shù)的基礎(chǔ)知識和函數(shù)圖象,考查了分析能力,屬于基礎(chǔ)題.5、B【解題分析】
試題分析:擲兩顆均勻的骰子,共有36種基本事件,點數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點:概率問題6、B【解題分析】由題可知每天織的布的多少構(gòu)成等差數(shù)列,其中第一天為首項,一月按30天計可得,從第2天起每天比前一天多織的即為公差.又,解得.故本題選B.7、A【解題分析】
首先根據(jù)不等式組畫出對應(yīng)的可行域,再分別計算出頂點的坐標,帶入目標函數(shù)求出相應(yīng)的值,即可找到最大值和最小值.【題目詳解】不等式組對應(yīng)的可行域如圖所示:,.,.,,.,,.故選:A【題目點撥】本題主要考查線性規(guī)劃,根據(jù)不等式組畫出可行域為解題的關(guān)鍵,屬于簡單題.8、A【解題分析】
將點的坐標代入直線方程:,再利用乘1法求最值【題目詳解】將點的坐標代入直線方程:,,當且僅當時取等號【題目點撥】已知和為定值,求倒數(shù)和的最小值,利用乘1法求最值。9、B【解題分析】
根據(jù)直線方程分離參數(shù),再由直線過定點的條件可得方程組,解方程組進而可得m的值.【題目詳解】恒過定點,恒過定點,由解得即直線恒過定點.【題目點撥】本題考查含有參數(shù)的直線過定點問題,過定點是解題關(guān)鍵.10、B【解題分析】
先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【題目詳解】解:對一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【題目點撥】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)三角函數(shù)的誘導公式,準確運算,即可求解.【題目詳解】由題意,可得.故答案為:.【題目點撥】本題主要考查了三角函數(shù)的誘導公式的化簡、求值問題,其中解答中熟記三角函數(shù)的誘導公式,準確運算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.12、1【解題分析】
由一元二次方程根與系數(shù)的關(guān)系得到a+b=p,ab=q,再由a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列列關(guān)于a,b的方程組,求得a,b后得答案.【題目詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)題.【思路點睛】解本題首先要能根據(jù)韋達定理判斷出a,b均為正值,當他們與-2成等差數(shù)列時,共有6種可能,當-2為等差中項時,因為,所以不可取,則-2只能作為首項或者末項,這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項公式可知-2必為等比中項,兩數(shù)列搞清楚以后,便可列方程組求解p,q.13、(答案不唯一)【解題分析】
確定圓心到直線的距離,即可求直線的方程.【題目詳解】由題意得圓心坐標,半徑,,∴圓心到直線的距離為,∴滿足條件的一條直線的方程為.故答案為:(答案不唯一).【題目點撥】本題考查直線和圓的方程的應(yīng)用,考查學生的計算能力,屬于中檔題.14、【解題分析】
在中,令,可得,可得點在半徑為的圓上,,可得,進而可得的最大值.【題目詳解】∵向量、滿足||=1,且與的夾角等于,如圖在中,令,,可得可得點B在半徑為R的圓上,1R4,R=1.則||的最大值為1R=4【題目點撥】本題考查了向量的夾角、模的運算,屬于中檔題.15、【解題分析】
在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【題目詳解】.故答案為:.【題目點撥】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.16、【解題分析】
根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【題目詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【題目點撥】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學生的計算能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)利用正弦定理可將已知等式化為,利用兩角和差余弦公式展開整理可求得,根據(jù)可求得結(jié)果;(2)利用三角形面積公式可構(gòu)造方程求出;利用余弦定理可直接求得結(jié)果.【題目詳解】(1)由正弦定理可得:,即(2)設(shè)的面積為,則由得:,解得:由余弦定理得:【題目點撥】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、三角形面積公式和余弦定理的應(yīng)用;關(guān)鍵是能夠通過正弦定理將邊化角,得到角的一個三角函數(shù)值,從而根據(jù)角的范圍求得結(jié)果.18、(1)(2)①9,②【解題分析】
(1)根據(jù)不等式的端點值是對應(yīng)方程的實數(shù)根,利用根與系數(shù)的關(guān)系,得到的值;(2)①根據(jù)求的最值,可利用求最值;②利用二次函數(shù)恒成立問題求解.【題目詳解】由已知可知,的兩根是所以,解得.(2)①,當時等號成立,因為,解得時等號成立,此時的最小值是9.②在上恒成立,,又因為代入上式可得解得:.【題目點撥】本題考查了二次函數(shù)與一元二次方程和一元二次不等式的問題,和基本不等式求最值,屬于基礎(chǔ)題型.19、見解析.【解題分析】試題分析:(1)討論的取值,分為,兩種情形,求出對應(yīng)不等式的解集即可.試題解析:當a=0時,原不等式化為x+10,解得;當時,原不等式化為,解得;綜上所述,當a=0時,不等式的解集為,當時,不等式的解集為.點睛:本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,元二次不等式的核心還是求一元二次方程的根,然后在結(jié)合圖象判定其區(qū)間解題時應(yīng)用分類討論的思想,是中檔題目;常見的討論形式有:1、對二項式系數(shù)進行討論;2、相對應(yīng)的方程是否有根進行討論;3、對應(yīng)根的大小進行討論.20、(1)①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)【解題分析】
(1)不等式,可化為,分三種情況討論,分別利用一元二次不等式的解法求解即可;(2)不等可化為,根據(jù)1和4是方程的兩根,利用韋達定理列方程求解即可.【題目詳解】(1)不等式,可化為:.①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)不等可化為:.由不等式的解集為可知,1和4是方程的兩根.故有,解得.由時方程為的根為1或4,則實數(shù)的值為1.【題目點撥】本題主要考查一元二次不等式的解法以及分類討論思想的應(yīng)用,屬于中檔題..分類討論思想的常見類型
,⑴問題中的變量或含
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版園林綠化升降車租賃協(xié)議
- 前臺轉(zhuǎn)正自我鑒定合集12篇
- 2024年紅蘋果飲料項目可行性研究報告
- 2024年中國PE水龍帶市場調(diào)查研究報告
- 2024年特種紙掛歷項目可行性研究報告
- 企業(yè)網(wǎng)站策劃書(匯編15篇)
- 2022護士自我鑒定怎么寫10篇
- 免燒磚購銷合同
- 活動策劃方案范文集錦八篇
- 監(jiān)控設(shè)備安裝合同
- 湖南2025年湖南電氣職業(yè)技術(shù)學院招聘14人歷年參考題庫(頻考版)含答案解析
- 生物除臭系統(tǒng)施工方案
- 《電工技術(shù)》課件-電氣安全及電氣火災(zāi)預(yù)防
- 湖南省湘西州吉首市2023屆九年級上學期期末素質(zhì)監(jiān)測數(shù)學試卷(含解析)
- 2023-2024學年湖北省武漢市東西湖區(qū)三年級(上)期末數(shù)學試卷
- GB/T 31771-2024家政服務(wù)母嬰護理服務(wù)質(zhì)量規(guī)范
- 2023-建筑施工技02課件講解
- 期末試卷:福建省廈門市集美區(qū)2021-2022學年八年級上學期期末歷史試題(原卷版)
- 2024云南保山電力股份限公司招聘(100人)高頻難、易錯點500題模擬試題附帶答案詳解
- 2024年中南出版?zhèn)髅郊瘓F股份有限公司招聘筆試參考題庫含答案解析
- (完整版)制茶學總結(jié)
評論
0/150
提交評論