2024屆山東省各地高一數(shù)學第二學期期末達標檢測模擬試題含解析_第1頁
2024屆山東省各地高一數(shù)學第二學期期末達標檢測模擬試題含解析_第2頁
2024屆山東省各地高一數(shù)學第二學期期末達標檢測模擬試題含解析_第3頁
2024屆山東省各地高一數(shù)學第二學期期末達標檢測模擬試題含解析_第4頁
2024屆山東省各地高一數(shù)學第二學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省各地高一數(shù)學第二學期期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線x-2y+2=0關(guān)于直線x=1對稱的直線方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=02.已知平面向量與的夾角為,且,則()A. B. C. D.3.如圖,為正方體,下面結(jié)論錯誤的是()A.異面直線與所成的角為45° B.平面C.平面平面 D.異面直線與所成的角為45°4.的內(nèi)角的對邊分別為,,,若的面積為,則A. B. C. D.5.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.某公司的廣告費支出與銷售額(單位:萬元)之間有下列對應數(shù)據(jù):已知對呈線性相關(guān)關(guān)系,且回歸方程為,工作人員不慎將表格中的第一個數(shù)據(jù)遺失,該數(shù)據(jù)為()A.28 B.30 C.32 D.357.已知球的直徑SC=4,A,B是該球球面上的兩點,AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.8.下列命題正確的是()A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.9.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為A.35 B.20 C.18 D.910.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.若,則________.12.中,,,,則______.13.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=14.若直線l1:y=kx+1與直線l2關(guān)于點(2,3)對稱,則直線l2恒過定點_____,l1與l2的距離的最大值是_____.15.化簡:______.(要求將結(jié)果寫成最簡形式)16.已知數(shù)列滿足,若,則數(shù)列的通項______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知無窮數(shù)列,是公差分別為、的等差數(shù)列,記(),其中表示不超過的最大整數(shù),即.(1)直接寫出數(shù)列,的前4項,使得數(shù)列的前4項為:2,3,4,5;(2)若,求數(shù)列的前項的和;(3)求證:數(shù)列為等差數(shù)列的必要非充分條件是.18.函數(shù)在同一個周期內(nèi),當時,取最大值1,當時,取最小值-1.(1)求函數(shù)的單調(diào)遞減區(qū)間.(2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和.19.已知為常數(shù)且均不為零,數(shù)列的通項公式為并且成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)設是數(shù)列前項的和,求使得不等式成立的最小正整數(shù).20.如圖,已知四棱錐,側(cè)面是正三角形,底面為邊長2的菱形,,.(1)設平面平面,求證:;(2)求多面體的體積;(3)求二面角的余弦值.21.已知函數(shù)().(1)若在區(qū)間上的值域為,求實數(shù)的值;(2)在(1)的條件下,記的角所對的邊長分別為,若,的面積為,求邊長的最小值;(3)當,時,在答題紙上填寫下表,用五點法作出的圖像,并寫出它的單調(diào)遞增區(qū)間.0

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

所求直線的斜率與直線x-2y+2=0的斜率互為相反數(shù),且在x=1處有公共點,求解即可。【題目詳解】直線x-2y+2=0與直線x=1的交點為P1,3因為直線x-2y+2=0的斜率為12,所以所求直線的斜率為-故所求直線方程為y-32=-故答案為A.【題目點撥】本題考查了直線的斜率,直線的方程,直線關(guān)于直線的對稱問題,屬于基礎題。2、A【解題分析】

根據(jù)平面向量數(shù)量積的運算法則,將平方運算可得結(jié)果.【題目詳解】∵,∴,∴cos=4,∴,故選A.【題目點撥】本題考查了利用平面向量的數(shù)量積求模的應用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎題目.3、A【解題分析】

根據(jù)正方體性質(zhì),依次證明線面平行和面面平行,根據(jù)直線的平行關(guān)系求異面直線的夾角.【題目詳解】根據(jù)正方體性質(zhì),,所以異面直線與所成的角等于,,,所以不等于45°,所以A選項說法不正確;,四邊形為平行四邊形,,平面,平面,所以平面,所以B選項說法正確;同理可證:平面,是平面內(nèi)兩條相交直線,所以平面平面,所以C選項說法正確;,異面直線與所成的角等于,所以D選項說法正確.故選:A【題目點撥】此題考查線面平行和面面平行的判定,根據(jù)平行關(guān)系求異面直線的夾角,考查空間線線平行和線面平行關(guān)系的掌握4、C【解題分析】分析:利用面積公式和余弦定理進行計算可得。詳解:由題可知所以由余弦定理所以故選C.點睛:本題主要考查解三角形,考查了三角形的面積公式和余弦定理。5、C【解題分析】

由,則只需將函數(shù)的圖象向左平移個單位長度.【題目詳解】解:因為,所以要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位長度.故選:C.【題目點撥】本題考查了三角函數(shù)圖像的平移變換,屬基礎題.6、B【解題分析】

由回歸方程經(jīng)過樣本中心點,求得樣本平均數(shù)后代入回歸方程即可求得第一組的數(shù)值.【題目詳解】設第一組數(shù)據(jù)為,則,,根據(jù)回歸方程經(jīng)過樣本中心點,代入回歸方程,可得,解得,故選:B.【題目點撥】本題考查了回歸方程的性質(zhì)及簡單應用,屬于基礎題.7、C【解題分析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.8、C【解題分析】試題分析:有兩個面平行,其余各面都是四邊形的幾何體,A錯;有兩個面平行,其余各面都是平行四邊形的幾何體如圖所示,B錯;用一個平行于底面的平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺,D錯;由棱柱的定義,C正確;考點:1、棱柱的概念;2、棱臺的概念.9、C【解題分析】試題分析:模擬算法:開始:輸入成立;,成立;,成立;,不成立,輸出.故選C.考點:1.數(shù)學文化;2.程序框圖.10、D【解題分析】

根據(jù)公式把模轉(zhuǎn)化為數(shù)量積,展開后再根據(jù)和已知條件計算.【題目詳解】因為在方向上的投影為,所以,.故選D.【題目點撥】本題主要考查向量模有關(guān)的計算,常用公式有,.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

直接利用倍角公式展開,即可得答案.【題目詳解】由,得,即,.故答案為:.【題目點撥】本題考查三角函數(shù)的化簡求值,考查倍角公式的應用,屬于基礎題.12、【解題分析】

根據(jù),得到的值,再由余弦定理,得到的值.【題目詳解】因為,所以,在中,,,由余弦定理得.所以.故答案為:【題目點撥】本題考查二倍角的余弦公式,余弦定理解三角形,屬于簡單題.13、65π【解題分析】

本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果?!绢}目詳解】如圖所示,作AB中點D,連接PD、CD,在CD上作三角形ABC的中心E,過點E作平面ABC的垂線,在垂線上取一點O,使得PO=OC。因為三棱錐底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點E的平面ABC的垂線上,因為PO=OC,P、C兩點在三棱錐的外接球的球面上,所以O點即為球心,因為平面PAB⊥平面ABC,PA=PB,D為AB中點,所以PD⊥平面ABCCD=CA2-ADPD=P設球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【題目點撥】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。14、(4,5)4.【解題分析】

根據(jù)所過定點與所過定點關(guān)于對稱可得,與的距離的最大值就是兩定點之間的距離.【題目詳解】∵直線:經(jīng)過定點,又兩直線關(guān)于點對稱,則兩直線經(jīng)過的定點也關(guān)于點對稱∴直線恒過定點,∴與的距離的最大值就是兩定點之間的距離,即為.故答案為:,.【題目點撥】本題考查了過兩條直線交點的直線系方程,屬于基礎題.15、【解題分析】

結(jié)合誘導公式化簡,再結(jié)合兩角差正弦公式分析即可【題目詳解】故答案為:【題目點撥】本題考查三角函數(shù)的化簡,誘導公式的使用,屬于基礎題16、【解題分析】

直接利用數(shù)列的遞推關(guān)系式和疊加法求出結(jié)果.【題目詳解】因為,所以當時,.時也成立.所以數(shù)列的通項.【題目點撥】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊加法在數(shù)列中的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)的前4項為1,2,3,4,的前4項為1,1,1,1;(2);(3)證明見解析【解題分析】

(1)根據(jù)定義,選擇,的前4項,盡量選用整數(shù)計算方便;(2)分別考慮,的前項的規(guī)律,然后根據(jù)計算的運算規(guī)律計算;(3)根據(jù)必要不充分條件的推出情況去證明即可.【題目詳解】(1)由的前4項為:2,3,4,5,選、的前項為正整數(shù):的前4項為1,2,3,4,的前4項為1,1,1,1;(2)將的前項列舉出:;將的前項列舉出:;則;(3)充分性:取,此時,將的前項列舉出:,將前項列出:,此時的前項為:,顯然不是等差數(shù)列,充分性不滿足;必要性:設,,當為等差數(shù)列時,因為,所以,又因為,所以有:,且,所以;,,不妨令,則有如下不等式:;當時,令,則當時,,此時無解;當時,令,則當時,,此時無解;所以必有:,故:必要性滿足;綜上:數(shù)列為等差數(shù)列的必要非充分條件是【題目點撥】本題考查數(shù)列的定義以及證明,難度困難.對于充分必要條件的證明,需要對充分性和必要性同時分析,不能取其一分析;新定義的數(shù)列問題,可通過定義先理解定義的含義,然后再分析問題.18、(1),;(2).【解題分析】

(1)先求出周期得,由最高點坐標可求得,然后由正弦函數(shù)的單調(diào)性得結(jié)論;(2)由直線與的圖象交點的對稱性可得.【題目詳解】(1)由題意,∴,又,,,由得,∴,令得,∴單調(diào)減區(qū)間是,;(2)在含有三個周期,如圖,的圖象與在上有六個交點,前面兩個交點關(guān)于直線對稱,中間兩個關(guān)于直線對稱,最后兩個關(guān)于直線對稱,∴所求六個根的和為.【題目點撥】本題考查由三角函數(shù)的性質(zhì)求解析式,考查函數(shù)的單調(diào)性,考查函數(shù)零點與方程根的分布問題.函數(shù)零點與方程根的分布問題可用數(shù)形結(jié)合思想,把方程的根轉(zhuǎn)化為函數(shù)圖象與直線交點的橫坐標,再利用對稱性求解.19、(1);(2)【解題分析】

(1)由,可得,,,.根據(jù)、、成等差數(shù)列,、、成等比數(shù)列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分別利用等差數(shù)列與等比數(shù)列的求和公式即可得出.【題目詳解】(1),,,,.,,成等差數(shù)列,,,成等比數(shù)列.,,,,,.聯(lián)立解得:,.(2)由(1)可得:,,由,解得..【題目點撥】本題考查等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、分類討論方法、不等式的解法,考查推理能力與計算能力,屬于中檔題.20、(1)證明見解析;(2);(3).【解題分析】

(1)由,證得平面,再由線面平行的性質(zhì),即可得到;(2)取中點,連結(jié),推得,,得到平面,再由多面體的體積,結(jié)合體積公式,即可求解;(3)由,設的中點為,連結(jié),推得,從而得到就是二面角的平面角,由此可求得二面角的余弦值.【題目詳解】證明:(1)因為平面平面,所以平面,又平面,平面平面,所以;(2)取中點,連結(jié),由得,同理,又因為,所以平面,在中,,所以,所以多面體的體積;(3)由題意知,底面為邊長2的菱形,,所以,又,所以,設的中點為,連結(jié),由側(cè)面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值為.【題目點撥】本題主要考查了線面位置關(guān)系的判定,多面體的體積的計算,以及二面角的求解,其中解答中熟記線面位置關(guān)系的判定與性質(zhì),以及而面積的平面角的定義,準確計算是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.21、(1);(2);(3)填表見解析,作圖見解析,().【解題分析】

(1)利用二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論