




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
【中考】模擬
河北省邯鄲市館陶縣2022年中考數學測試模擬試題(二模)
試卷副標題
考試范圍:xxx;考試時間:100分鐘;命題人:xxx
題號一二三總分
得分
注意事項:
1.答題前填寫好自己的姓名、班級、考號等信息
2.請將答案正確填寫在答題卡上
第I卷(選一選)
請點擊修改第I卷的文字說明
評卷入得分
1.如圖,生活中,有以下兩個現象,對于這兩個現象的解釋,正確的是()
現象1:測量跳詼的成績現象2:彎曲的河道改.直
A.兩個現象均可用兩點之間線段最短來解釋
B.現象1用垂線段最短來解釋,現象2用兩點有且只有一條直線來解釋
C.現象1用垂線段最短來解釋,現象2用兩點之間線段最短來解釋
D.現象1用兩點有且只有一條直線來解釋,現象2用垂線段最短來解釋
2.若“□忘=應,貝I運算符號“□”表示()
A.+B.-C.xD.十
3.如圖,將線段N8繞一個點順時針旋轉90。得到線段C。,則這個點是()
AQ~BN
MD
A.M點B.。點C.P點D.N點
【中考】模擬
4.已知〃為正整數,若+…+。:=』(力》…X3<,則"的值是()
27個J〃偽/
A.1B.2C.3D.4
5.如圖是一個鐘表,根據時針和分針的位置,鐘表中的時間可以是()
B.9:30C.2:30D.12:30
6.如圖,在菱形/8CO中,AD=2連接/C,過點A作/EL/C交CB的延長線于
C.4D.4陋
7.如圖,數軸上有三個點4B、C,分別表示實數%。+5、5,則原點的位置在()
aa+55
ABC
A.點A和點8之間B.點5和點。之間C.點A的左側D.點C的右側
8.已知圖1所示的平面圖形可以折疊成圖2所示的正方體,則小正方形P的圖案是
()
12
【中考】模擬
9.已知一個甲種的質量為7x1。-"千克,一個乙種的質量為1.8x102千克.若一個甲種
和一個乙種的質量之和為加千克,則〃?用科學記數法可以表示為()
A.8.8x10'"B.7.18x10-"C.8.8xl()T2D.7.18x10-2
”片"時,下列步驟,
10.解方程組能消去末知數y的是()
x-2y=-1②
A.①x2-②x3B.①x3-②x2C.①x3+②x2D.①x2+②x3
11.如圖,已知嘉嘉五次黨史測試的成績如條形統(tǒng)計圖所示,現再測試,若六次測試成
)
A.7分B.7.5分C.8分D.10分
12.如圖,在RfRtzMBC中,ZC=90\D、E、尸分別是/C、4B、8c的中點,連接
ED、EF.求證:四邊形DEFC是矩形.證明過程如下:
證明:;D、E、F分別是/C、4B、BC的中點,
:.DE、EF都是的中位線,
,四邊形DEFC是平行四邊形,
?.?NC=90。,.?.平行四邊形。EFC是矩形.
【中考】模擬
為了保證證明的嚴謹性,在橫線上需要補充的內容是()
A.DE=CF=-BC,EF//CDB.EF=CD=-AC,DE//CF
22
C.EF//CD,DE//CFD.NEFC=/C=90"
13.已知M、N表示整式,且」(+/L=X+2,則下列說確的是()
x-22-x
A.M表示-x\N表示4B.A/表示N表示4
C.加表示一,N表示-4D.必表示-x2,N表示-4
14.如圖1,將一個三角形紙片沿虛線裁下一個小三角形,依據作圖痕跡及圖2中所示
的數據,裁下的小三角形紙片的周長是()
D.23.5
15.一個周六的早上,小新騎共享單車到區(qū)圖書館看書,看完書后步行回家,下列圖象
能大致反映這一過程的是()
【中考】模擬
16.如圖,已知半圓。的直徑48=8,C是半圓上一點,沿NC折疊半圓得到弧/OC,
交直徑48于點。,若。力、的長均不小于2,則4C的長可能是()
第H卷(非選一選)
請點擊修改第II卷的文字說明
評卷人得分
-----------------二、填空題
17.已知/=2°x2.
(1)”;
(2)。的相反數與。的倒數的和為.
18.如圖,在正六邊形/8C。所的內部作正五邊形
(1)NCDH=°;
(2)連接EG并延長,交AB于點N,則=
19.在平面直角坐標系中,規(guī)定:橫坐標與縱坐標均為整數的點叫作整點.
(1)若反比例函數、=次(》>0)的圖象點(3,1),則反比例函數>=網(》>0)的圖象與
XX
坐標軸所圍成的區(qū)域內(不含邊界)整點的個數是;
2
(2)若直線夕=〃7(、-1)+2("?>0)與反比例函數歹=—(》>0)的圖象及直線、=:所圍
x2
【中考】模擬
成的區(qū)域內(不含邊界)整點的個數是3,則〃?的取值范圍是
評卷人得分
20.淇淇在計算:(-1產22T_2)3+6+(;-£|時,步驟如下:
解:原式=-2022-(-6)+6+;-6+;……①
=-2022+6+12-18...②
=-2048……③
(1)淇淇的計算過程中開始出現錯誤的步驟是;(填序號)
(2)請給出正確的解題過程.
21.B^l^-(4x2-5x-6)=-5x2+7x+12.
(1)求整式A;
(2)當整式A取值時,求此時-5/+7x+12的值.
22.某廣告公司有策劃、設計、制作三個工作室,依據各工作室員工人數及年平均工資
情況制成如圖所示的扇形統(tǒng)計圖和統(tǒng)計表.
各工作室員工人數占比扇形統(tǒng)計圖
各工作室員工人數及年平均工資統(tǒng)計表
工作室員工人數每名員工年平均工資(萬)
策劃510
設計b8
制作C5
(1)“策劃”所在扇形的圓心角度數為,該公司三個工作室一共有人;
(2)若從該公司三個工作室中隨機抽取一名員工參加社會公益,求抽到“設計”工作室員工
【中考】模擬
的概率;
(3)若該公司招進了5名新員工,計劃分別安排到“策劃”和“制作”工作室,工資待遇按各
工作室的年平均工資發(fā)放,問招進新員工后,該公司三個工作室的年平均工資是否能保
持不變,并說明理由.
23.如圖,點E是的邊BC上一點,==AD=AB,AB、DE
相交于點尸.
(1)求證:"DE知ABC;
(2)若ZC=70.
①當時,求ND4E的度數:
②當A/8C的外心在其內部時,直接寫出DS的取值范圍.
24.某商店某月出甲、乙兩種電器共100臺,已知每臺甲電器的利潤為300元,每臺乙
電器的利潤為320元.設出甲電器x臺,兩種電器所獲得的總利潤為M元).
(1)求V與x之間的函數解析式:
(2)若受其他因素影響,當月的乙電器的數量不超過甲電器的數量的3倍.
①求》的值;
②在實際過程中,若每臺甲電器的利潤增加。元(10<。<30),每臺乙電器的利潤不變,
已知甲電器最多90臺,請求出V取值時對應的x的值.
25.如圖1,在平行四邊形Z8C。中,4ff=6,SC=12,=60",點P在射線84上
運動,以點尸為圓心,8尸長為半徑的圓交射線員4于點。,交BC于點、E.
(1)連接力C,求/C的長;
(2)如圖2,若點。與點A重合,求陰影部分的面積;
(3)若。尸與平行四邊形ABCD的邊所在的直線相切,直接寫出BP的長.
【中考】模擬
26.在平面直角坐標系中,拋物線y=a*+fcv+l(awO)點/(2,1),頂點為點B.
(1)用含。的代數式表示6;
(2)若a>0,設拋物線y=#+6x+l(aH0)的對稱軸為直線/,過/作于點〃,
且=,當加-24x4加時,拋物線的點的縱坐標為17,求優(yōu)的值;
(3)若點C的坐標為(-5,-1),將點C向右平移9個單位長度得到點。,當拋物線
夕=加+尿+1(“父0)與線段C。有兩個交點時,直接寫出。的取值范圍.
【中考】模擬
參考答案:
1.C
【解析】
【分析】
直接利用線段的性質以及直線的性質分別分析得出答案.
【詳解】
解:現象1:測量運動員的跳遠成績時,皮尺與起跳線保持垂直,可用“垂線段最短”來解釋;
現象2:把彎曲的河道改直,可以縮短航程可用“兩點之間線段最短”來解釋,
故選:C.
【點睛】
此題主要考查了線段的性質,兩點的所有連線中,可以有無數種連法,如折線、曲線、線段
等,這些所有的線中,線段最短.
2.D
【解析】
【分析】
根據二次根式的除法運算法則即可求出答案.
【詳解】
解:由題意可得:
>/44-^2=?
故選:D
【點睛】
本題考查二次根式的除法運算,解題的關鍵是熟練掌握運算法則.
3.A
【解析】
【分析】
根據旋轉到對應點的距離相等作圖可以得解.
【詳解】
如圖,連接/C、BD,分別作ZC、80的垂直平分線,發(fā)現相交于〃點,因此〃點是旋
轉.
【中考】模擬
故選A.
【點睛】
本題考查旋轉的應用,熟練掌握旋轉的性質、線段垂直平分線的性質及作法是解題關鍵.
4.C
【解析】
【分析】
根據整式乘方、幕的乘方、積的乘方解答.
【詳解】
??ab+ahH--Fa6=27a63a2x3/x???x3a2=(3a2)
?s------V-------',?\/>
27個/〃個3/
???(3叫〃=27/=(3*'
n=3.
故選:C.
【點睛】
本題考查罌的應用,熟練掌握基的乘方、積的乘方及乘方意義是解題關鍵.
5.A
【解析】
【分析】
根據時針與分針的位置及各選項所給時刻時針與分針的夾角即可判斷.
【詳解】
解:圖中所給時針與分針夾角為:2.5x30=75。,
選項A,時針與分針夾角為:75°,符合題意;
選項B,時針與分針夾角為:105。,不符合題意;
選項C,時針與分針夾角為:105。,不符合題意;
選項D,時針與分針夾角為:165。,不符合題意;
故選:A.
【中考】模擬
【點睛】
本題考查了鐘面角(時針與分針的夾角)的求法,掌握分針每分鐘轉6。、時針每分鐘轉0.5。
是解題關鍵.
6.C
【解析】
【分析】
先證明=,再根據ZE+N/CE=N8/E+N8/C=90。,即可證明=
則BE=/B=2,CE=4.
【詳解】
解::四邊形Z8CO是菱形,
AB=BC=AD=2f
???ZBAC=ZBCAf
V/E4c=90。,
???Z£+/ACE=/BAE+ABAC=90°,
/./BAE=NE,
ABE=AB=2,
:.CE=4f
故選C.
【點睛】
本題主要考查了菱形的性質,等腰三角形的性質與判定,直角三角形兩銳角互余,熟知菱形
的性質是解題的關鍵.
7.A
【解析】
【分析】
先根據/、8、C三點位置關系可判斷。的取值范圍,再判斷原點位置即可.
【詳解】
解:Va+5<5,
6T<0,
VCB<AB,
【中考】模擬
/.5—(a+5)<(a+5)—a,
-a<5,
a+5>0,
/.原點的位置在點力和點2之間.
故選:A.
【點睛】
本題考查了數軸上的點表示數的規(guī)律、數軸上兩點間的距離、一元不等式的解法等知識點.掌
握數軸上的點表示的數從左到右逐漸增大是解題關鍵.
8.D
【解析】
【分析】
可以把圖1逆時針旋轉90。后向左、向右、向前、向后折疊得到正方體2,再把正前方的圖
形順時針旋轉90。即可得到解答.
【詳解】
解:把圖1逆時針旋轉90。后向左、向右、向前、向后折疊得到正方體2,此時尸變?yōu)椋?/p>
把上圖順時針旋轉90。即得P圖原圖如下:
故選D.
【點睛】
本題考查旋轉的應用,熟練掌握正方體的折疊方法及旋轉的方法是解題關鍵.
9.B
【解析】
【中考】模擬
【分析】
先根據有理數的乘法與加法法則求出m的值,再根據科學記數法的定義即可得.
【詳解】
-,2
解:由題意得:w=7xl0-"+1.8xl0
=7xl0-"+0.18xl0-"
=(7+0.18)xl0'"
=7.18x10-",
故選:B.
【點睛】
本題考查了科學記數法,熟記科學記數法的定義(將一個數表示成4X10”的形式,其中
i<H<io,〃為整數,這種記數的方法叫做科學記數法)是解題關鍵.確定〃的值時,要看
把原數變成。時,小數點移動了多少位,〃的值與小數點移動的位數相同.
10.D
【解析】
【分析】
由消去未知數y,可得方程組中y的未知數系數化為值相等,符號相反,①x2+②x3可消
去y.
【詳解】
解:?.?消去未知數y,
解方程組中y的未知數系數化為值相等,符號相反,
.,.①x2+②x3可消去y.
故選:D
【點睛】
本題考查二元方程組加減消元法,關鍵是化某一未知數系數化為值相等,系數相同用減法,
系數相反用加法.
11.B
【解析】
【分析】
【中考】模擬
先根據眾數是7求出第六次的測試成績,然后根據中位數的定義求解即可.
【詳解】
原來五次測試成績(單位:分)分別為7,7,8,8,10,再測試,若六次測試成績的眾數
為7分,
二第6次的測試成績是7分,
,這六次成績(單位:分)分別為7,7,7,8,8,10,
7_LR
???中位數為^=7.5(分),
故選B.
【點睛】
本題主要考查了中位數和眾數,熟知二者的定義是解題的關鍵.
12.C
【解析】
【分析】
根據三角形中位線的性質與平行四邊形的判定條件進行求解即可.
【詳解】
證明::。、E、尸分別是4C、AB、8c的中點,
:.DE、EF都是的中位線,
DE//CF,EF//CD,
.?.四邊形。EFC是平行四邊形,
VZC=90°,
二平行四邊形DEFC是矩形,
故選C.
【點睛】
本題主要考查了三角形中位線定理,平行四邊形的判定,熟知三角形中位線定理和平行四邊
形的判定條件是解題的關鍵.
13.B
【解析】
【分析】
利用分式的混合運算可求出M-N=(x+2Xx-2)=x2-4,進一步可知M表示/表示
【中考】模擬
4.
【詳解】
MNM-N
解::---------1---------=x+2,
x-22-xx-2
M—N—(x+2)(x—2)=X?—4,
.,.”表示一,N表示4.
故選:B
【點睛】
本題考查分式的混合運算,解題的關鍵是熟練掌握分式混合運算的法則,求出
M-N^(x+2)(x-2)^x2-4.
14.B
【解析】
【分析】
由作圖可知N4DE=NC,可證△4OE?△4(%,然后根據相似三角形的性質求解即可.
【詳解】
解:如圖,
**?&ADE~AACB,
.ADDE_AE
??就一詬一茄,
.AD6_AE
-4£*+6一五-3+10.5'
/.AD—7.5,AE=9,
???裁下的小三角形紙片的周長為7.5+6+9=22.5.
故選B.
【點睛】
本題考查了相似三角形的判定與性質,熟練掌握相似三角形的判定與性質是解答本題的關
【中考】模擬
鍵.在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充
分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.
15.D
【解析】
【分析】
根據題意可得離家的距離越來越遠,以及看完書后步行回家,速度比原來慢,據此判斷即可.
【詳解】
解:A.因為看完書后步行回家,速度比原來慢,屬于回來所用的時間比去的時間多,故本
選項不合題意;
B.去圖書館時,離圖書館的距離越來越小,故本選項不合題意;
C.去圖書館時騎共享單車,速度較快;看書時速度為0,看完書后步行回家,速度比原來
慢,故本選項不合題意;
D.去圖書館時路程越來越遠,看書時路程不變,回家時路程增加,故本選項符合題意.
故選:D.
【點睛】
本題考查的是函數圖象,要求學生具有利用函數的圖象信息解決生活中的實際問題的能力.
16.A
【解析】
【分析】
分如解圖①,當點。在圓心。的左側且4。=2時,如解圖②,當點。在圓心。的右側且
80=2時,兩種情況求出ZC的長,從而確定/C的取值范圍即可得到答案.
【詳解】
如解圖①,當點。在圓心。的左側且力。=2時,過C作CE_L/8,垂足為E,連接CD、CO、
CB,
:AC=ADC>
:.ZCDB=ZCBD,
CD=CB,
:.DE=BE=3,
":DO=2,
【中考】模擬
0E=1,
AAE^5,CE2=CO2-OE2=15>
AC=y]CE2+AE2=V40;
如解圖②,當點。在圓心。的右側且8。=2時,過C作CEL/8,垂足為E,連接CO、CO、
CB,
AC=ADC,
,ZCDB=NCBD,
CD=CB,
DE=BE=\,
:.OE=3,
:.AE=1,CE2=CO2-OE2=7>
AC=yJCE2+AE2=病,
...若。/、的長均不小于2,則同44c4病,
...ZC的長可能是7,
故選A.
【點睛】
本題主要考查了圓周角定理,等腰三角形的性質與判定,勾股定理,無理數的估算等等,利
用分類討論的思想求解是解題的關鍵.
【解析】
【中考】模擬
【分析】
(1)根據零指數塞和負整數指數塞的計算法則求解即可;
(2)根據(1)所求分別求出。的相反數為-;,。的倒數為2,據此求解即可.
【詳解】
W:(1)Va~[=2°x2=1x2=2,
a=—,
2
故答案為:y;
(2)。的相反數為-;,。的倒數為2,
13
的相反數與。的倒數的和為-7+2=7,
22
3
故答案為:—.
2
【點睛】
本題主要考查了零指數累,負整數指數幕,倒數和相反數,熟知相關定義和計算法則是解題
的關鍵.
18.1272
【解析】
【分析】
(1)先求出正六邊形與正五邊形的每個內角,然后圖形求解即可;
(2)由等邊對等角得出NWEG=NMGE=36。,圖形利用四邊形內角和求解即可.
【詳解】
(1)???正六邊形ABCDEF中,
AZCn£=180M6-2)=120O1
6
,??正五邊形QEMG//中,
,,”帖J0X5-a):.,
5
???NCDH=NCDE-NHDE=12°;
(2)?:MG=ME,/GME=108。,
???ZMEG=/MGE=36°,
由(1)的方法可得/FEM=12。,
【中考】模擬
ZFEN=48°,
ZANE=360°-NZ—ZF-AFEN=72°.
故答案為:①12;②72.
【點睛】
題目主要考查正多邊形內角和及等邊對等角的性質,熟練掌握正多邊形內角和定理是解題關
鍵.
311
19.3;—<m<2^―<m<—
243
【解析】
【分析】
(1)根據圖象點(3,1),求出反比例函數解析式y(tǒng)=即可找出整點的個數;
(2)畫出函數圖象,函數圖象求解”的取值范圍.
【詳解】
解:(1)..?反比例函數y=?(x>0)的圖象點(3,1),
:.2m=3,
則反比例函數V=《(x>0)的圖象與坐標軸所圍成的區(qū)域內(不含邊界)整點為(1,2),
(1,1),(2,1),整點個數是3;
(2)如解圖①,當機=2時,則反比例函數y=?x>0)的圖象與直線y=2x及直線y=5所
圍成區(qū)域內(不含邊界)有。,1),(2,1),(3,1)3個整點;
圖①
3731I
如解圖②,當"?=:時,則反比例函數y=±(x>0)的圖象與直線了==》+彳及直線y=:所
2x222
圍成區(qū)域內(不含邊界)有(1,1),(2,1)2個整點;
【中考】模擬
21
如解圖③,當掰=1時,則反比例函數y=;(x>0)的圖象與直線》=x+l及直線y=5所圍成
區(qū)域內(不含邊界)有(1』)1個整點;
圖③
如解圖④,當加=;時,則反比例函數y=,(x>0)的圖象與直線y=+]及直線夕=;所
圍成區(qū)域內(不含邊界)有(0,1)1個整點;
如解圖⑤,當機=!時,則反比例函數y=:(x>0)的圖象與直線y=+J及直線y=:所
JJXJ3,
圍成區(qū)域內(不含邊界)有(0,1)2個整點;
【中考】模擬
如解圖⑥,當陽=:時,則反比例函數y=A(x>0)的圖象與直線y=%+(及直線y所
圍成區(qū)域內(不含邊界)有(-2,1),(-1,1),(0,1)3個整點;
本題考查反比例函數綜合問題,(1)的關鍵是掌握待定系數法求解析式,(2)有一定難度,
解題的關鍵是函數圖象進行分析.
20.⑴①;
(2)見解析.
【解析】
【分析】
(1)根據有理數的運算法則可知從①計算錯誤;
(2)根據有理數的運算法則計算即可.
⑴
解:由題意可知:
【中考】模擬
(-1)2022_(-2)3+6+(;-;卜一(-8)+6+:;
故開始出現錯誤的步驟是①,
⑵
解:(-1)為"-(-2),—;
=l-(-8)+6+L
6
=1+8+36,
=45.
【點睛】
本題考查含乘方的有理數的運算,解題的關鍵是掌握運算法則并能夠正確計算.
21.(l)-x2+2x+6
⑵14
【解析】
【分析】
(1)根據題意可得N=-5/+7X+12+(4X2-5X-6),再去括號,然后合并同類項,即可求
解;
(2)根據二次函數的性質可得當x=l時,/取值7,再代入,即可求解.
(1)
解:/4=-5A:2+7X+12+(4X2-5X-6)
=-5x2+7x+12+4x~-5x-6
--x~+2x+6
(2)
解:A=-x2+2x+6
=_(X-1)2+7,
.?.當x=l時,/取值7,
二-5/+7x+12
=-5xl2+7xl+12
=14
【點睛】
【中考】模擬
本題主要考查了整式的加減混合運算,二次函數的性質,熟練掌握整式的加減混合運算法則,
二次函數的性質是解題的關鍵.
22.(1)90°;20
9
(2)—
(3)不能保持不變;理由見解析
【解析】
【分析】
(1)先求出“策劃”工作室的員工人數所在的百分比,再用360。乘以“策劃”工作室的員工人
數所在的百分比,即可求解;
(2)先求出“設計”工作室的員工人數,再根據概率公式,即可求解;
(3)先分別求出b=9,c=20x30%=6,然后設安排到“策劃”工作室x名新員工,則安排
到“制作”工作室(5-x)名新員工,其中x為正整數,根據題意.列出方程,即可求解.
(1)
解:根據題意得:“策劃”工作室的員工人數所在的百分比為1-30%-45%=25%,
,“策劃”所在扇形的圓心角度數為360。x25%=90°;
該公司三個工作室一共有5+25%=20;
故答案為:90°,20;
(2)
解:?.?該公司三個工作室一共有20名員工,
“設計,,工作室的員工人數為20x45%=9,
9
:.P(抽到“設計”工作室員工)=—;
(3)
解:不能保持不變.理由如下:
由(2)得:b=9,c=20x30%=6,
設安排到“策劃”工作室x名新員工,則安排到“制作”工作室(5-x)名新員工,其中x為正整
數,依據題意,得
5x10+9x8+6x5_(x+5)xl0+9x8+(l1)x5
-^6—25,
解得x=2.6,
【中考】模擬
為正整數,
x-2.6,不符合題意,
.?.招進新員工后,該公司三個工作室的年平均工資不能保持不變.
【點睛】
本題主要考查了扇形統(tǒng)計圖,求概率,一元方程的應用,明確題意,準確從統(tǒng)計圖中獲取信
息是解題的關鍵.
23.(1)證明見解析
⑵①75。;②20°</8<90。
【解析】
【分析】
(1)先證明乙0=48,NDAE=/BAC,再即可得證;
(2)①先根據全等三角形性質及等腰三角形性質求出NEZC、N8的度數,再等量代換即
可;
②根據銳角三角形外心的性質求解即可.
(1)
證明:,/ZDAB=ZDEB,ZDFA=ZEFB,
:.ND=NB,
':NDAB=NCAE,
:.ZDAE=ZBAC,
AD=AB,
:."DE知ABC;
(2)
解:①,;"DE為4BC,
:.AE=AC,
:.ZAEC=ZC=70°,
NEAC=40°,
AE=BE,
ZB=NBAE,
VNAEC=NB+NBAE,
:.NB=NBAE=35°,
【中考】模擬
ZDAE=ABAC=ZBAE+ZEAC=75°.
②20。<48<90。.
:A/8C的外心在其內部,
...△/8C為銳角三角形,
,ZS<90°,Z^C=180°-ZC-Z5=110o-ZS<90°,
200<Z5<90°.
【點睛】
本題考查了全等三角形的判定與性質、等腰三角形的性質及三角形外心的定義等知識點.靈
活運用全等三角形的判定定理是解題關鍵.
24.(l)j=-20x4-32000
(2)①31500②90
【解析】
【分析】
(1)根據已知條件列式即可;
(2)①根據“當月的乙電器的數量不超過甲電器的數量的3倍”,可以列出關于x的不等式,
再由(1)根據函數的增減性可以得解;
②由題意列出V與x之間的函數解析式,再對x的系數作出討論,最終根據函數的增減性可
以得解.
(1)
y=300x+320(100-x)=-20x+32000;
(2)
?V100-x<3x,:.x>25,
vk=-20,y隨x增大而減小,
.,.當x=25時,夕有值為31500;
②由題意可得,
y=(300+a)x+320(100-x)=(a-20)x+32000,
當10<a<20時,a-20<0,
?隨x增大而減小,
V25<x<90,...當J取值時,x=25;
【中考】模擬
當"20時,"20=0,
在254x490時,V的值恒為32000;
當20<a<30時,?-20>0,
二V隨x增大而增大,
V25<x<90,當歹取值時,x=90.
【點睛】
本題考查函數的綜合應用,熟練掌握函數的增減性是解題關鍵.
25.(1)673
。、390
(2)一乃-----
24
(3)12^-18或
【解析】
【分析】
(1)如圖①,連接/C,取8c的中點。,連接/。,由/8=8。=6,4=60。,可得
為等邊三角形,由。/=OC=6,得NO/C=NOC4=30。,根據4C=2OC.cosNO。計算
求解/C的值即可;
(2)如圖②,連接ABPE是等邊三角形,則5E=5P=3,/8PE=60。,過點P作PWLBE
于點M,根據PA/=5Psin60。求解的值,根據S陰影=S扇物射-S,.計算求解即可;
(3)由題意知,分兩種情況求解:情況一、如圖③,設。P與NO邊所在直線相切于點N,
連接PN,延長NP交BC于點F,則ZFND=90°,2NFC=90°,過點/作ZG_LBC于點G,
則N/G8=90。,可證四邊形NFG/是矩形,AG=3后,根據NF=NP+PF=BP+走~BP計
2
算求解5P的值即可;情況二、如圖④,設0P與C。邊所在直線相切于點//,連接尸〃,則
NPHC=90°,NHPB=90°,連接ZC,由(1)知4C_LN8,ACJ.CD,可證四邊形“P/C
是矩形,根據8P=P"=4C計算求解8尸的值即可.
(1)
解:如圖①,連接/C,取BC的中點。,連接40,
【中考】模擬
/.AB=80=6,
又???4=60。,
為等邊三角形,
AZBAO=ZBOA=60°f。4=6,
9
\OA=OC=6f
:.NOAC=ZOCA,
???Z.BOA=60°=ZOAC+ZOCA,
???ZOAC=ZOCA=30°f
AAC=2OC-cos40cA=2x6x—=66,
2
???4C的長為6石.
(2)
?/BP=EP,Z5=60°,
:?ABPE是等邊三角形,
:,BE=BP=3,NBPE=6/,
【中考】模擬
過點P作尸A/_LBE于點M,
,PM=BP-sm60°^—>
2
2
.cc?60x^x313樞394
..s陰影=5崩形/>8/_5,/>8£=-通2X"三u2^~4~
...陰影部分的面積為3%-空.
24
(3)
解:8P的長為126-18或6方.
由題意知,分兩種情況求解:情況一、如圖③,設O尸與力。邊所在直線相切于點N
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年婚姻家庭咨詢師職業(yè)技能認證模擬試卷(家庭關系與心理咨詢)-家庭關系重建技巧
- 計算機二級MySQL查詢語句解析試題及答案
- 惡性肺部腫瘤診療與研究進展
- 2025年紅十字會急救員資格認證模擬試卷(心肺復蘇與創(chuàng)傷處理)-心肺復蘇與創(chuàng)傷處理急救技能考核標準解析
- 2025年教師資格證(高中)學科知識與教學能力沖刺試卷(教案設計專項訓練)
- 康復治療體位管理要點
- 企業(yè)轉型中的財務成本管理試題及答案
- 高中一年級語文統(tǒng)編版《致云雀》
- 逐步解析的計算機二級Python試題及答案
- 2025年中國女子數學奧林匹克(CGMO)模擬試卷:組合數學與數論競賽熱點分析
- 脾破裂的應急處理流程
- 《畢節(jié),我的家鄉(xiāng)》課件
- 2023醫(yī)院全員績效考核實施方案(詳細版)
- 新聞記者職業(yè)資格《新聞采編實務》考試題庫(含答案)
- 【MOOC】人工智能:模型與算法-浙江大學 中國大學慕課MOOC答案
- 《物理化學》第二章-熱力學第一定律課件
- 電力工程監(jiān)理規(guī)劃
- 2024年江蘇省蘇州市工業(yè)園區(qū)中考語文一模試卷
- (中級技能操作考核)消防設施操作員考試題庫(全真題版)
- 以案說法-校園安全法律風險防范與糾紛處理 課件
- 宮腔粘連手術護理查房
評論
0/150
提交評論