上海市市西初級中學2023-2024學年高一上數(shù)學期末綜合測試模擬試題含解析_第1頁
上海市市西初級中學2023-2024學年高一上數(shù)學期末綜合測試模擬試題含解析_第2頁
上海市市西初級中學2023-2024學年高一上數(shù)學期末綜合測試模擬試題含解析_第3頁
上海市市西初級中學2023-2024學年高一上數(shù)學期末綜合測試模擬試題含解析_第4頁
上海市市西初級中學2023-2024學年高一上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市市西初級中學2023-2024學年高一上數(shù)學期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.為了鼓勵大家節(jié)約用水,北京市居民用水實行階梯水價,其中每戶的戶年用水量與水價的關系如下表所示:分檔戶年用水量(立方米)水價(元/立方米)第一階梯0-180(含)5第二階梯181-260(含)7第三階梯260以上9假設居住在北京的某戶家庭2021年的年用水量為200m3,則該戶家庭A.1800元 B.1400元C.1040元 D.1000元2.一個空間幾何體的三視圖如圖所示,則該幾何體的表面積為A.7B.9C.11D.133.曲線在區(qū)間上截直線及所得的弦長相等且不為,則下列對,的描述正確的是A., B.,C., D.,4.已知定義域為R的函數(shù)在單調(diào)遞增,且為偶函數(shù),若,則不等式的解集為()A. B.C. D.5.若斜率為2的直線經(jīng)過,,三點,則a,b的值是A., B.,C., D.,6.設為偶函數(shù),且在區(qū)間上單調(diào)遞減,,則的解集為()A.(-1,1) B.C. D.(2,4)7.若,則的值為A. B.C. D.8.已知平面向量,,且,則實數(shù)的值為()A. B.C. D.9.浙江省在先行探索高質(zhì)量發(fā)展建設共同富裕示范區(qū),統(tǒng)計數(shù)據(jù)表明,2021年前三季度全省生產(chǎn)總值同比增長10.6%,兩年平均增長6.4%,倘若以8%的年平均增長率來計算,經(jīng)過多少年可實現(xiàn)全省生產(chǎn)總值翻一番(,)()A.7年 B.8年C.9年 D.10年10.函數(shù)的值域為()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(0,1)二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.如圖,在空間四邊形中,平面平面,,,且,則與平面所成角的度數(shù)為________12.函數(shù)(其中,,)的圖象如圖所示,則函數(shù)的解析式為__________13.函數(shù)的部分圖象如圖所示.若,且,則_____________14.若,,三點共線,則實數(shù)的值是__________15.若,則________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù)(1)求函數(shù)的定義域,并判斷函數(shù)的奇偶性;(2)對于,不等式恒成立,求實數(shù)的取值范圍17.已知集合,(1)當m=5時,求A∩B,;(2)若,求實數(shù)m取值范圍18.如圖,在平行四邊形中,分別是上的點,且滿,記,,試以為平面向量的一組基底.利用向量的有關知識解決下列問題;(1)用來表示向量;(2)若,且,求;19.已知冪函數(shù)的圖象關于軸對稱,集合.(1)求的值;(2)當時,的值域為集合,若是成立的充分不必要條件,求實數(shù)的取值范圍.20.已知集合,(1)若,,求;(2)集合A,B能否相等?若能,求出a,b的值;若不能,請說明理由.21.已知二次函數(shù)滿足且(1)求的解析式;(2)在區(qū)間上求的值域

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】結合階梯水價直接求解即可.【詳解】由表可知,當用水量為180m3時,水費為當水價在第二階段時,超出20m3,水費為則年用水量為200m3,水價為故選:C2、B【解析】該幾何體是一個圓上面挖掉一個半球,S=2π×3+π×12+=9π.3、A【解析】分析:,關于對稱,可得,由直線及的距離小于可得.詳解:因為曲線在區(qū)間上截直線及所得的弦長相等且不為,可知,關于對稱,所以,又弦長不為,直線及的距離小于,∴.故選A.點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),意在考查綜合運用所學知識解決問題的能力,以及數(shù)形結合思想的應用,屬于簡單題.4、D【解析】根據(jù)題意,由函數(shù)為偶函數(shù)分析可得函數(shù)的圖象關于直線對稱,結合函數(shù)的單調(diào)性以及特殊值分析可得,解可得的取值范圍,即可得答案【詳解】解:根據(jù)題意,函數(shù)為偶函數(shù),則函數(shù)的圖象關于直線對稱,又由函數(shù)在,單調(diào)遞增且f(3),則,解可得:,即不等式的解集為;故選:D5、C【解析】根據(jù)兩點間斜率公式列方程解得結果.【詳解】斜率為直線經(jīng)過,,三點,∴,解得,.選C.【點睛】本題考查兩點間斜率公式,考查基本求解能力,屬基礎題.6、C【解析】由奇偶性可知的區(qū)間單調(diào)性及,畫出函數(shù)草圖,由函數(shù)不等式及函數(shù)圖象求解集即可.【詳解】根據(jù)題意,偶函數(shù)在上單調(diào)遞減且,則在上單調(diào)遞增,且函數(shù)的草圖如圖,或,由圖可得-2<x<0或x>2,即不等式的解集為故選:C7、B【解析】根據(jù)誘導公式將原式化簡為,分子分母同除以,即可求出結果.【詳解】因為,又,所以原式.故選B【點睛】本題主要考查誘導公式和同角三角函數(shù)基本關系,熟記公式即可,屬于基礎題型.8、C【解析】根據(jù)垂直向量坐標所滿足的條件計算即可【詳解】因為平面向量,,且,所以,解得故選:C9、D【解析】由題意,可得,,兩邊取常用對數(shù),根據(jù)參數(shù)數(shù)據(jù)即可求解.【詳解】解:設經(jīng)過年可實現(xiàn)全省生產(chǎn)總值翻一番,全省生產(chǎn)總值原來為,由題意可得,即,兩邊取常用對數(shù)可得,所以,因為,所以,所以經(jīng)過10年可實現(xiàn)全省生產(chǎn)總值翻一番.故選:D.10、D【解析】將函數(shù)解析式變形為,再根據(jù)指數(shù)函數(shù)的值域可得結果.【詳解】,因為,所以,所以,所以函數(shù)的值域為.故選:D二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】首先利用面面垂直轉(zhuǎn)化出線面垂直,進一步求出線面的夾角,最后通過解直角三角形求出結果.【詳解】取BD中點O,連接AO,CO.因為AB=AD,所以,又平面平面,所以平面.因此,即為AC與平面所成的角,由于,,所以,又,所以【點睛】本題主要考查直線與平面所成的角,屬于基礎題型.12、【解析】如圖可知函數(shù)的最大值,當時,代入,,當時,代入,,解得則函數(shù)的解析式為13、##【解析】根據(jù)函數(shù)的圖象求出該函數(shù)的解析式,結合圖象可知,點、關于直線對稱,進而得出.【詳解】由圖象可知,,即,則,此時,,由于,所以,即.,且,由圖象可知,,則.故答案為:.14、5【解析】,,三點共線,,即,解得,故答案為.15、【解析】由,根據(jù)三角函數(shù)的誘導公式進行轉(zhuǎn)化求解即可.詳解】,,則,故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)的定義域為,奇函數(shù);(2).【解析】(1)由求定義域,再利用奇偶性的定義判斷其奇偶性;(2)將對于,不等式恒成立,利用對數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化為對于,不等式恒成立求解.【小問1詳解】解:由函數(shù),得,即,解得或,所以函數(shù)的定義域為,關于原點對稱,又,所以奇函數(shù);【小問2詳解】因為對于,不等式恒成立,所以對于,不等式恒成立,所以對于,不等式恒成立,所以對于,不等式恒成立,令,則在上遞增,所以,所以.17、(1),(2)【解析】(1)根據(jù)集合的交集、并集運算即得解;(2)轉(zhuǎn)化為,分,兩種情況討論,列出不等式控制范圍,求解即可【小問1詳解】(1)當時,可得集合,,根據(jù)集合的運算,得,.【小問2詳解】解:由,可得,①當時,可得,解得;②當時,則滿足,解得,綜上實數(shù)的取值范圍是.18、(1);(2).【解析】(1)由平面向量的線性運算法則結合圖形即可得解;(2)由平面向量數(shù)量積的運算律可得,進而可得,再由運算即可得解.【詳解】(1)∵在平行四邊形中,,∴;(2)由(1)可知:,∴,∵且,∴,∴,又,∴,∴,∴.【點睛】本題考查了平面向量線性運算及數(shù)量積運算的應用,考查了運算求解能力,屬于基礎題.19、(1)(2)【解析】(1)根據(jù)冪函數(shù)的定義可得,求出的值,再檢驗即可得出答案.(2)先求出函數(shù)的值域,即得出集合,然后由題意知,根據(jù)集合的包含關系得到不等式組,從而求出答案.【小問1詳解】由冪函數(shù)定義,知,解得或,當時,的圖象不關于軸對稱,舍去,當時,的圖象關于軸對稱,因此.【小問2詳解】當時,的值域為,則集合,由題意知,得,解得.20、(1),或;(2)能,,【解析】(1)代入數(shù)據(jù),根據(jù)集合的交集和補集運算法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論