上海市楊浦區(qū)2023年八年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
上海市楊浦區(qū)2023年八年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
上海市楊浦區(qū)2023年八年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
上海市楊浦區(qū)2023年八年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
上海市楊浦區(qū)2023年八年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市楊浦區(qū)2023年八年級數(shù)學第一學期期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.要說明命題“若>,則>”是假命題,能舉的一個反例是()A. B.C. D.2.如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP,并廷長交BC于點D,則下列說法中正確的個數(shù)是()①AD是∠BAC的平分線②∠ADC=60°③點D在AB的垂直平分線上④若AD=2dm,則點D到AB的距離是1dm⑤S△DAC:S△DAB=1:2A.2 B.3 C.4 D.53.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD4.現(xiàn)在人們鍛煉身體的意識日漸增強,但是一些人保護環(huán)境的意識卻很淡薄,如圖是興慶公園的一角,有人為了抄近道而避開橫平豎直的路的拐角∠ABC,而走“捷徑AC’于是在草坪內(nèi)走出了一條不該有的“路AC”,已知AB=40米,BC=30米,他們踩壞了___米的草坪,只為少走___米路()A.20、50 B.50、20 C.20、30 D.30、205.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時A.2個 B.3個 C.4個 D.5個6.如圖,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,則()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC7.下圖中為軸對稱圖形的是().A. B. C. D.8.下列各式:,,,,(x+y)中,是分式的共有()A.1個 B.2個 C.3個 D.4個9.一次函數(shù)的圖象不經(jīng)過的象限是()A.第一象限. B.第二象限 C.第三象限 D.第四象限10.直線y=kx+b經(jīng)過第二、三、四象限,那么()A., B., C., D.,11.以下問題,不適合用普查的是()A.旅客上飛機前的安檢 B.為保證“神州9號”的成功發(fā)射,對其零部件進行檢查C.了解某班級學生的課外讀書時間 D.了解一批燈泡的使用壽命12.已知一個等腰三角形的腰長是,底邊長是,這個等腰三角形的面積是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,點A,C,D,E在Rt△MON的邊上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于點H,DF⊥ON于點F,OM=12,OE=6,BH=3,DF=4,F(xiàn)N=8,圖中陰影部分的面積為________.14.在一次對某二次三項式進行因式分解時,甲同學因看錯了一次項系數(shù)而將其分解3(x+2)(x+8);乙同學因看錯了常數(shù)項而將其分解為3(x+7)(x+1),則將此多項式進行正確的因式分解為____.15.等腰三角形的兩邊長分別為2和7,則它的周長是_____.16.已知直線:與直線:在同一坐標系中的圖象交于點,那么方程組的解是______.17.如圖,在中,分別以點A和點C為圓心,大于長為半徑畫弧,兩弧相交于點M、N;作直線MN分別交BC、AC于點D、點E,若,的周長為13cm,則的周長為________.18.當時,分式有意義.三、解答題(共78分)19.(8分)如圖,已知在中,,,,是上的一點,,點從點出發(fā)沿射線方向以每秒個單位的速度向右運動.設點的運動時間為.連結(jié).(1)當秒時,求的長度(結(jié)果保留根號);(2)當為等腰三角形時,求的值;(3)過點做于點.在點的運動過程中,當為何值時,能使?20.(8分)如圖,D是等邊△ABC的AB邊上的一動點(不與端點A、B重合),以CD為一邊向上作等邊△EDC,連接AE.(1)無論D點運動到什么位置,圖中總有一對全等的三角形,請找出這一對三角形,并證明你得出的結(jié)論;(2)D點在運動過程中,直線AE與BC始終保持怎樣的位置關系?并說明理由.21.(8分)如圖,中,是高,點是上一點,,,分別是上的點,且.(1)求證:.(2)探索和的關系,并證明你的結(jié)論.22.(10分)如圖,在四邊形ABCD中,∠ABC=∠ADC=45°,將△BCD繞點C順時針旋轉(zhuǎn)一定角度后,點B的對應點恰好與點A重合,得到△ACE.(1)求證:AE⊥BD;(2)若AD=2,CD=3,試求四邊形ABCD的對角線BD的長.23.(10分)(1).(2)先化簡,再求值:,其中.24.(10分)在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如圖1,D,E是等腰Rt△ABC斜邊BC上兩動點,且∠DAE=45°,將△ABE繞點A逆時針旋轉(zhuǎn)90后,得到△AFC,連接DF①求證:△AED≌△AFD;②當BE=3,CE=7時,求DE的長;(2)如圖2,點D是等腰Rt△ABC斜邊BC所在直線上的一動點,連接AD,以點A為直角頂點作等腰Rt△ADE,當BD=3,BC=9時,求DE的長.25.(12分)教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學教材第94頁的部分內(nèi)容.1.線段垂直平分線我們已經(jīng)知道線段是軸對稱圖形,線段的垂直平分線是線段的對稱軸,如圖,直線是線段的垂直平分線,是上任一點,連結(jié).將線段沿直線對折,我們發(fā)現(xiàn)與完全重合.由此即有:線段垂直平分線的性質(zhì)定理線段垂直平分線上的點到線段兩端的距離相等.已知:如圖,垂足為點,點是直線上的任意一點.求證:.分析圖中有兩個直角三角形和,只要證明這兩個三角形全等,便可證得.定理證明:請根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程.定理應用:(1)如圖②,在中,直線分別是邊的垂直平分線,直線m、n交于點,過點作于點.求證:.(1)如圖③,在中,,邊的垂直平分線交于點,邊的垂直平分線交于點.若,則的長為__________.26.問題情景:數(shù)學課上,老師布置了這樣一道題目,如圖1,△ABC是等邊三角形,點D是BC的中點,且滿足∠ADE=60°,DE交等邊三角形外角平分線于點E.試探究AD與DE的數(shù)量關系.操作發(fā)現(xiàn):(1)小明同學過點D作DF∥AC交AB于F,通過構造全等三角形經(jīng)過推理論證就可以解決問題,請您按照小明同學的方法確定AD與DE的數(shù)量關系,并進行證明.類比探究:(2)如圖2,當點D是線段BC上任意一點(除B、C外),其他條件不變,試猜想AD與DE之間的數(shù)量關系,并證明你的結(jié)論.拓展應用:(3)當點D在線段BC的延長線上,且滿足CD=BC,在圖3中補全圖形,直接判斷△ADE的形狀(不要求證明).

參考答案一、選擇題(每題4分,共48分)1、D【分析】作為反例,要滿足條件但不能得到結(jié)論,然后根據(jù)這個要求對各選項進行判斷即可.【詳解】解:A、a=3,b=2,滿足a>b,且滿足|a|>|b|,不能作為反例,故錯誤;

B、a=4,b=-1,滿足a>b,且滿足|a|>|b|,不能作為反例,故錯誤;

C、a=1,b=0;滿足a>b,且滿足|a|>|b|,不能作為反例,故錯誤;

D、a=-1,b=-2,滿足a>b,但不滿足|a|>|b|,∴a=-1,b=-2能作為證明原命題是假命題的反例,

故選D.【點睛】本題考查了命題與定理;熟記:要判斷一個命題是假命題,舉出一個反例就可以.2、D【分析】①根據(jù)作圖的過程可以判定AD是∠BAC的角平分線;

②利用角平分線的定義可以推知∠CAD=30°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);

③利用等角對等邊可以證得△ADB的等腰三角形,由等腰三角形的“三線合一”的性質(zhì)可以證明點D在AB的中垂線上;

④作DH⊥AB于H,由∠1=∠2,DC⊥AC,DH⊥AB,推出DC=DH即可解決問題;

⑤利用30度角所對的直角邊是斜邊的一半、三角形的面積計算公式來求兩個三角形的面積之比.【詳解】解:①根據(jù)作圖的過程可知,AD是∠BAC的平分線,故①正確;②如圖,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正確;③∵∠1=∠B=30°,∴AD=BD,∴點D在AB的中垂線上.故③正確;④作DH⊥AB于H,∵∠1=∠2,DC⊥AC,DH⊥AB,∴DC=DH,在Rt△ACD中,CD=AD=1dm,∴點D到AB的距離是1dm;故④正確,⑤在Rt△ACB中,∵∠B=30°,∴AB=2AC,∴S△DAC:S△DAB=AC?CD:?AB?DH=1:2;故⑤正確.綜上所述,正確的結(jié)論是:①②③④⑤,共有5個.故選:D.【點睛】本題考查了角平分線的性質(zhì)、線段垂直平分線的性質(zhì)以及作圖-基本作圖.解題時,需要熟悉等腰三角形的判定與性質(zhì).3、A【分析】根據(jù)全等三角形的判定:SAS,AAS,ASA,可得答案.【詳解】解:由題意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A錯誤;B、在△ABC與△BAD中,,△ABC≌△BAD(ASA),故B正確;C、在△ABC與△BAD中,,△ABC≌△BAD(AAS),故C正確;D、在△ABC與△BAD中,,△ABC≌△BAD(SAS),故D正確;故選:A.【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.4、B【分析】根據(jù)勾股定理求出AC即可解決問題.【詳解】在Rt△ABC中,∵AB=40米,BC=30米,∴AC50,30+40﹣50=20,∴他們踩壞了50米的草坪,只為少走20米的路.故選:B.【點睛】本題考查了勾股定理,解題的關鍵是理解題意,屬于中考基礎題.5、B【解析】根據(jù)圖形給出的信息求出兩車的出發(fā)時間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時快車行駛了4個小時,故錯誤.②慢車0時出發(fā),快車2時出發(fā),故正確.③快車4個小時走了276km,可求出速度為69km/h,錯誤.④慢車6個小時走了276km,可求出速度為46km/h,正確.⑤慢車走了18個小時,速度為46km/h,可得A,B距離為828km,正確.⑥快車2時出發(fā),14時到達,用了12小時,錯誤.故答案選B.【點睛】本題考查了看圖手機信息的能力,注意快車并非0時刻出發(fā)是解題關鍵.6、D【解析】由SAS易證△ADF≌△ABF,根據(jù)全等三角形的對應邊相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,則∠ADF=∠C,根據(jù)同位角相等,兩直線平行,得出FD∥BC.解:在△ADF與△ABF中,

∵AF=AF,∠1=∠2,AD=AB,

∴△ADF≌△ABF,

∴∠ADF=∠ABF,

又∵∠ABF=∠C=90°-∠CBF,

∴∠ADF=∠C,

∴FD∥BC.

故選B.

7、D【分析】根據(jù)軸對稱圖形的定義可得.【詳解】根據(jù)軸對稱圖形定義可得ABC選項均不是軸對稱圖形,D選項為軸對稱圖形.【點睛】軸對稱圖形沿對稱軸折疊,左右兩邊能夠完全重合.8、C【分析】判斷分式的依據(jù)是看分母中是否含有字母,如果含有字母則是分式,如果不含有字母則不是分式.【詳解】,,分母中含有字母,因此是分式;,的分母中均不含有字母,因此它們是整式,而不是分式.故分式有3個.故選C.【點睛】本題主要考查了分式的定義,注意判斷一個式子是否是分式的條件是:分母中是否含有未知數(shù),如果不含有字母則不是分式.9、B【解析】先根據(jù)一次函數(shù)的性質(zhì)判斷出此函數(shù)圖象所經(jīng)過的象限,再進行解答∵一次函數(shù)y=2x-3中,k=2>0,∴此函數(shù)圖象經(jīng)過一、三象限,∵b=-3<0,∴此函數(shù)圖象與y軸負半軸相交,∴此一次函數(shù)的圖象經(jīng)過一、三、四象限,不經(jīng)過第二象限.故選B.10、C【分析】根據(jù)圖象在坐標平面內(nèi)的位置關系確定k,b的取值范圍,從而求解.【詳解】∵直線y=kx+b經(jīng)過第二、四象限,∴k<0,又∵直線y=kx+b經(jīng)過第三象限,即直線與y軸負半軸相交,∴b<0,故選C.【點睛】本題主要考查一次函數(shù)圖象在坐標平面內(nèi)的位置與k、b的關系:k>0時,直線必經(jīng)過一、三象限;k<0時,直線必經(jīng)過二、四象限;b>0時,直線與y軸正半軸相交;b=0時,直線過原點;b<0時,直線與y軸負半軸相交.11、D【分析】根據(jù)普查得到的調(diào)查結(jié)果比較準確,但所費人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【詳解】解:旅客上飛機前的安檢適合用普查;為保證“神州9號”的成功發(fā)射,對其零部件進行檢查適合用普查;了解某班級學生的課外讀書時間適合用普查;了解一批燈泡的使用壽命不適合用普查.故選D.【點睛】本題考查的是抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進行普查、普查的意義或價值不大,應選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關重大的調(diào)查往往選用普查.12、D【分析】根據(jù)題意畫出圖形,過點A作AD⊥BC于點D,根據(jù)勾股定理求出AD的長,進而可得出結(jié)論.【詳解】解:如圖所示,

過點A作AD⊥BC于點D,

∵AB=AC=5,BC=8,

∴BD=BC=4,

∴AD=,∴S△ABC=BC?AD=×8×3=1.

故選D.【點睛】本題考查的是勾股定理和等腰三角形的性質(zhì),熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.二、填空題(每題4分,共24分)13、50【分析】易證△AEO≌△BAH,△BCH≌△CDF即可求得AO=BH,AH=EO,CH=DF,BH=CF,即可求得梯形DEOF的面積和△AEO,△ABH,△CGH,△CDF的面積,即可解題.【詳解】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO,∵在△AEO和△BAH中,∴△AEO≌△BAH(AAS),同理△BCH≌△CDF(AAS),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF的面積=(EF+DH)?FH=80,S△AEO=S△ABH=AF?AE=9,S△BCH=S△CDF=CH?DH=6,∴圖中實線所圍成的圖形的面積S=80-2×9-2×6=50,故選:B.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質(zhì),本題中求證△AEO≌△BAH,△BCH≌△CDF是解題的關鍵.14、【分析】分別將3(x+2)(x+8)和3(x+7)(x+1)展開,然后取3(x+2)(x+8)展開后的二次項和常數(shù)項,取3(x+7)(x+1)展開后的一次項,最后因式分解即可.【詳解】解:3(x+2)(x+8)=3x2+30x+483(x+7)(x+1)=3x2+24x+21由題意可知:原二次三項式為3x2+24x+483x2+24x+48=3(x2+8x+16)=故答案為:.【點睛】此題考查的是整式的乘法和因式分解,掌握多項式乘多項式法則、提取公因式法和公式法因式分解是解決此題的關鍵.15、16【分析】根據(jù)2和7可分別作等腰三角形的腰,結(jié)合三邊關系定理,分別討論求解.【詳解】當7為腰時,周長=7+7+2=16;當2為腰時,因為2+2<7,所以不能構成三角形.故答案為16【點睛】本題主要考查了三角形三邊關系,也考查了等腰三角形的性質(zhì).關鍵是根據(jù)2,7,分別作為腰,由三邊關系定理,分類討論.16、【分析】根據(jù)兩個一次函數(shù)組成的方程組的解就是兩函數(shù)圖象的交點可得答案.【詳解】解:直線:與直線:在同一坐標系中的圖象交于點,方程組的解是,故答案為.【點睛】此題主要考查了一次函數(shù)與二元一次方程組的關系,關鍵是掌握凡是函數(shù)圖象經(jīng)過的點必能滿足解析式.17、19cm【分析】根據(jù)尺規(guī)作圖得到是線段的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到,,根據(jù)三角形的周長公式計算即可.【詳解】解:由尺規(guī)作圖可知,是線段的垂直平分線,,,的周長為13,,則的周長,故答案為:.【點睛】本題考查的是線段垂直平分線的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.18、【分析】根據(jù)分式有意義的條件:分母不等于0即可求解.【詳解】根據(jù)題意得:x﹣1≠0,解得:x≠1.故答案為:≠1.【點睛】本題考查了分式有意義的條件,是一個基礎題目.三、解答題(共78分)19、(1)2;(2)4或16或2;(3)2或1.【分析】(1)根據(jù)題意得BP=2t,從而求出PC的長,然后利用勾股定理即可求出AP的長;(2)先利用勾股定理求出AB的長,然后根據(jù)等腰三角形腰的情況分類討論,分別列出方程即可求出t的值;(3)根據(jù)點P的位置分類討論,分別畫出對應的圖形,根據(jù)勾股定理求出AE,分別利用角平分線的性質(zhì)和判定求出AP,利用勾股定理列出方程,即可求出t的值.【詳解】(1)根據(jù)題意,得BP=2t,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt△APC中,根據(jù)勾股定理,得AP===2.答:AP的長為2.(2)在Rt△ABC中,AC=8,BC=16,根據(jù)勾股定理,得AB===8若BA=BP,則2t=8,解得:t=4;若AB=AP,∴此時AC垂直平分BP則BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2=CP2+AC2則(2t)2=(16-2t)2+82,解得:t=2.答:當△ABP為等腰三角形時,t的值為4、16、2.(3)若P在C點的左側(cè),連接PDCP=16-2t∵DE=DC=3,AC=8,,DC⊥PC∴PD平分∠EPC,AD=AC-DC=2根據(jù)勾股定理可得AE=,∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=16-2t∴AP=AE+EP=20-2t∵PA2=CP2+AC2則(20-2t)2=(16-2t)2+82,解得:t=2;若P在C點的右側(cè),連接PDCP=2t-16∵DE=DC=3,AC=8,,DC⊥PC∴PD平分∠EPC,AD=AC-DC=2根據(jù)勾股定理可得AE=∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=2t-16∴AP=AE+EP=2t-12∵PA2=CP2+AC2則(2t-12)2=(2t-16)2+82,解得:t=1;答:當t為2或1時,能使DE=CD.【點睛】此題考查的是勾股定理的應用、等腰三角形的定義、角平分線的性質(zhì)和判定,掌握利用勾股定理解直角三角形、根據(jù)等腰三角形腰的情況分類討論和角平分線的性質(zhì)和判定是解決此題的關鍵.20、(1)△BDC≌△AEC,理由見解析;(2)AE//BC,理由見解析【分析】(1)根據(jù)等邊三角形的性質(zhì)可得∠BCA=∠DCE=60°,BC=AC,DC=EC,然后根據(jù)等式的基本性質(zhì)可得∠BCD=∠ACE,再利用SAS即可證出結(jié)論;(2)根據(jù)全等三角形的性質(zhì)和等邊三角形的性質(zhì)可得∠DBC=∠EAC=60°,∠ACB=60°,然后利用平行線的判定即可得出結(jié)論.【詳解】(1)△BDC≌△AEC理由如下:∵△ABC和△EDC都是等邊三角形,∴∠BCA=∠DCE=60°,BC=AC,DC=EC.∴∠BCA-∠ACD=∠DCE-∠ACD∴∠BCD=∠ACE在△BDC和△AEC中∴△BDC≌△AEC(2)AE//BC理由如下:∵△BDC≌△AEC,△ABC是等邊三角形∴∠DBC=∠EAC=60°,∠ACB=60°∴∠EAC=∠ACB故AE//BC【點睛】此題考查的是全等三角形判定及性質(zhì)、等邊三角形的性質(zhì)和平行線的判定,掌握全等三角形判定及性質(zhì)、等邊三角形的性質(zhì)和平行線的判定是解決此題的關鍵.21、(1)證明見解析;(2)BM=BN,MB⊥BN;證明見解析.【分析】(1)由已知的等量關系利用SAS即可證明△ABE≌△DBC;(2)利用(1)的全等得到∠BAM=∠BDN.,再根據(jù),,證明△ABM≌△DBN得到BM=BN,∠ABM=∠DBN.再利用同角的余角相等即可得到MB⊥MN.【詳解】(1)證明:∵DB是高,∴∠ABE=∠DBC=90°.在△ABE和△DBC中,,∴△ABE≌△DBC.(2)解:BM=BN,MB⊥MN,證明如下:∵△ABE≌△DBC,∴∠BAM=∠BDN.在△ABM和△DBN中,∴△ABM≌△DBN.∴BM=BN,∠ABM=∠DBN.∴∠BDN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.【點睛】此題考查三角形全等的判定及性質(zhì)定理,熟記定理并運用解題是關鍵.22、(1)見解析;(2)【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90°,根據(jù)直角三角形的性質(zhì)可得AE⊥BD,

(2)由旋轉(zhuǎn)的性質(zhì)可得CD=CE=3,BD=AE,∠DCE=∠ACB=90°,由勾股定理可求BD的長.【詳解】(1)如圖,設AC與BD的交點為點M,BD與AE的交點為點N,

∵旋轉(zhuǎn)

∴AC=BC,∠DBC=∠CAE

又∵∠ABC=45°,

∴∠ABC=∠BAC=45°,

∴∠ACB=90°,

∵∠DBC+∠BMC=90°

∴∠AMN+∠CAE=90°

∴∠AND=90°

∴AE⊥BD,

(2)如圖,連接DE,

∵旋轉(zhuǎn)

∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°

∴DE==3,∠CDE=45°

∵∠ADC=45°

∴∠ADE=90°

∴EA==

∴BD=.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),勾股定理,熟練運用旋轉(zhuǎn)的性質(zhì)解決問題是本題的關鍵.23、(1)4;(2),【分析】(1)本題按照先算乘方,再算多項式乘法,最后再算加減法的順序即可完成;(2)本小題是關于分式的化簡求值,先計算除法,注意分式的分子分母能因式分解的先因式分解,以便進行約分,然后進行分式的加減,在化成最簡分式后,將代入即可求得.【詳解】解:(1)原式=(2)原式當x=2時,【點睛】(1)本小題主要考查的是整式的混合運算,掌握非零的數(shù)的零次冪、負整數(shù)指數(shù)冪的計算等解題的關鍵,去括號時符號的變化是解題中的易錯點;(2)本小題主要考查的是分式的運算,掌握分式混合運算的順序是解題的關鍵.24、(1)①見解析;②DE=;(2)DE的值為3或3【分析】(1)①先證明∠DAE=∠DAF,結(jié)合DA=DA,AE=AF,即可證明;②如圖1中,設DE=x,則CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分兩種情形:①當點E在線段BC上時,如圖2中,連接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解決問題;②當點D在CB的延長線上時,如圖3中,同法可得DE2=1.【詳解】(1)①如圖1中,∵將△ABE繞點A逆時針旋轉(zhuǎn)90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如圖1中,設DE=x,則CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中,DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=,∴DE=;(2)∵BD=3,BC=9,∴分兩種情況如下:①當點E在線段BC上時,如圖2中,連接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=3;②當點D在CB的延長線上時,如圖3中,連接BE.同理可證△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=1,∴DE=3,綜上所述,DE的值為3或3.【點睛】本題主要考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論