版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西省平遙中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的定義域是A. B.C. D.2.設(shè)四邊形ABCD為平行四邊形,,.若點M,N滿足,則()A.20 B.15C.9 D.63.已知為鈍角,且,則()A. B.C. D.4.已知矩形,,,將矩形沿對角線折成大小為的二面角,則折疊后形成的四面體的外接球的表面積是A. B.C. D.與的大小有關(guān)5.設(shè)集合A={x|-1<x<2},集合B={x|1<x<3},則A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}6.在中,為邊的中點,則()A. B.C. D.7.若,,若,則a的取值集合為()A. B.C. D.8.已知函數(shù)和,則下列結(jié)論正確的是A.兩個函數(shù)的圖象關(guān)于點成中心對稱圖形B.兩個函數(shù)的圖象關(guān)于直線成軸對稱圖形C.兩個函數(shù)的最小正周期相同D.兩個函數(shù)在區(qū)間上都是單調(diào)增函數(shù)9.已知平面向量,,且,則實數(shù)的值為()A. B.C. D.10.中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個三角形,邊長分別為,,,三角形的面積可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫秦九韶公式,現(xiàn)有一個三角形的邊長滿足,,則此三角形面積的最大值為()A.6 B.C.12 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知不等式的解集是__________.12.一個圓錐的側(cè)面展開圖是半徑為3,圓心角為的扇形,則該圓錐的體積為________.13.如圖,在直四棱柱中,當(dāng)?shù)酌鍭BCD滿足條件___________時,有.(只需填寫一種正確條件即可)14.已知且,函數(shù)的圖象恒經(jīng)過定點,正數(shù)、滿足,則的最小值為____________.15.已知冪函數(shù)的圖象過點,則________16.設(shè)為銳角,若,則的值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐的底面是菱形,,平面,是的中點.(1)求證:平面平面;(2)棱上是否存在一點,使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.18.已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,.(1)當(dāng)時,求函數(shù)的解析式.(2)解關(guān)于的不等式:.19.已知函數(shù),滿足,其一個零點為(1)當(dāng)時,解關(guān)于x的不等式;(2)設(shè),若對于任意的實數(shù),,都有,求M的最小值20.已知函數(shù)的圖象(部分)如圖所示,(1)求函數(shù)的解析式和對稱中心坐標(biāo);(2)求函數(shù)的單調(diào)遞增區(qū)間21.已知函數(shù)的最小值為1.(1)求的值;(2)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由,求得的取值集合得答案詳解】解:由,得,函數(shù)定義域是故選:D【點睛】本題考查函數(shù)的定義域及其求法,關(guān)鍵是明確正切函數(shù)的定義域,屬于基礎(chǔ)題2、C【解析】根據(jù)圖形得出,,,結(jié)合向量的數(shù)量積求解即可.【詳解】因為四邊形ABCD為平行四邊形,點M、N滿足,根據(jù)圖形可得:,,,,,,,,故選C.本題考查了平面向量的運算,數(shù)量積的運用,考查了數(shù)形結(jié)合的思想,關(guān)鍵是向量的分解,表示.考點:向量運算.3、C【解析】先求出,再利用和角的余弦公式計算求解.【詳解】∵為鈍角,且,∴,∴故選:C【點睛】本題主要考查同角的平方關(guān)系,考查和角的余弦公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.4、C【解析】由題意得,在二面角內(nèi)的中點O到點A,B,C,D的距離相等,且為,所以點O即為外接球的球心,且球半徑為,所以外接球的表面積為.選C5、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),選A考點:本題主要考查集合概念,集合的表示方法和并集運算.6、B【解析】由平面向量的三角形法則和數(shù)乘向量可得解【詳解】由題意,故選:B【點睛】本題考查了平面向量的線性運算,考查了學(xué)生綜合分析,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題7、B【解析】或,分類求解,根據(jù)可求得的取值集合【詳解】或,,,或或,解得或,綜上,故選:8、D【解析】由題意得選項A中,由于的圖象關(guān)于點成中心對稱,的圖象不關(guān)于點成中心對稱,故A不正確選項B中,由于函數(shù)的圖象關(guān)于點成中心對稱,的圖象關(guān)于直線成軸對稱圖形,故B不正確選項C中,由于的周期為2π,的周期為π,故C不正確選項D中,兩個函數(shù)在區(qū)間上都是單調(diào)遞增函數(shù),故D正確選D9、C【解析】根據(jù)垂直向量坐標(biāo)所滿足的條件計算即可【詳解】因為平面向量,,且,所以,解得故選:C10、B【解析】根據(jù)海倫秦九韶公式和基本不等式直接計算即可.【詳解】由題意得:,,當(dāng)且僅當(dāng),即時取等號,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】結(jié)合指數(shù)函數(shù)的單調(diào)性、絕對值不等式的解法求得不等式的解集.詳解】,,,或,解得或,所以不等式不等式的解集是.故答案為:12、.【解析】先求圓錐底面圓的半徑,再由直角三角形求得圓錐的高,代入公式計算圓錐的體積即可?!驹斀狻吭O(shè)圓錐底面半徑為r,則由題意得,解得.∴底面圓的面積為.又圓錐的高.故圓錐的體積.【點睛】此題考查圓錐體積計算,關(guān)鍵是找到底面圓半徑和高代入計算即可,屬于簡單題目。13、(答案不唯一)【解析】直四棱柱,是在上底面的投影,當(dāng)時,可得,當(dāng)然底面ABCD滿足的條件也就能寫出來了.【詳解】根據(jù)直四棱柱可得:∥,且,所以四邊形是矩形,所以∥,同理可證:∥,當(dāng)時,可得:,且底面,而底面,所以,而,從而平面,因為平面,所以,所以當(dāng)滿足題意.故答案為:.14、9【解析】由指數(shù)函數(shù)的性質(zhì)可得函數(shù)的圖象恒經(jīng)過定點,進而可得,然后利用基本不等式中“1”的妙用即可求解.【詳解】解:因為函數(shù)的圖象恒經(jīng)過定點,所以,又、為正數(shù),所以,當(dāng)且僅當(dāng),即時等號成立,所以的最小值為9.故答案為:9.15、3【解析】先求得冪函數(shù)的解析式,再去求函數(shù)值即可.【詳解】設(shè)冪函數(shù),則,則,則,則故答案為:316、【解析】由條件求得的值,利用二倍角公式求得和的值,再根據(jù),利用兩角差的正弦公式計算求得結(jié)果【詳解】∵為銳角,,∴,∴,故,故答案為.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的正弦公式、二倍角公式的應(yīng)用,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)點為的中點【解析】(1)證面面垂直,可先由線面垂直入手即,進而得到面面垂直;(2)通過構(gòu)造平行四邊形,得到線面平行.解析:(1)連接,因為底面是菱形,,所以為正三角形.因為是的中點,所以,因為面,,∴,因為,,,所以.又,所以面⊥面.(2)當(dāng)點為的中點時,∥面.事實上,取的中點,的中點,連結(jié),,∵為三角形的中位線,∴∥且,又在菱形中,為中點,∴∥且,∴∥且,所以四邊形平行四邊形.所以∥,又面,面,∴∥面,結(jié)論得證.點睛:這個題目考查了線面平行的證明,線面垂直的證明.一般證明線面平行是從線線平行入手,通過構(gòu)造平行四邊形,三角形中位線,梯形底邊等,找到線線平行,再證線面平行.證明線線垂直也可以從線面垂直入手.18、(1)當(dāng)時,(2)【解析】(1)根據(jù)函數(shù)奇偶性可求出函數(shù)的解析式;(2)先構(gòu)造函數(shù),然后利用函數(shù)的單調(diào)性解不等式.【小問1詳解】解:當(dāng)時,,..又當(dāng)時,也滿足當(dāng)時,函數(shù)的解析式為.【小問2詳解】設(shè)函數(shù)函數(shù)在上單調(diào)遞增又可化為,在上也是單調(diào)遞增函數(shù).,解得.關(guān)于的不等式的解集為.19、(1)答案見解析(2)242【解析】(1)根據(jù)條件求出,再分類討論解不等式即可;(2)將問題轉(zhuǎn)化為,再通過換無求最值即可.【小問1詳解】因為,則,得又其一個零點為,則,得,則函數(shù)的解析式為則,即當(dāng)時,解得:當(dāng)時,①時,解集為R②時,解得:或,③時,解得:或,綜上,當(dāng)時,不等式的解集為;當(dāng)時,解集為R;當(dāng)時,不等式的解集為或;當(dāng)時,不等式的解集為或.【小問2詳解】對于任意的,,都有,即令,則因,則,可得,則,即,即M的最小值為24220、(1),對稱中心;(2),【解析】(1)由函數(shù)的圖象得出A,求出函數(shù)的四分之一周期,從而得出ω,代入最高點坐標(biāo)求出φ,得函數(shù)的解析式,進而求出對稱中心坐標(biāo);(2)令,從而得到函數(shù)的單調(diào)遞增區(qū)間.【詳解】(1)由題意可知,,,,又當(dāng)時,函數(shù)取得最大值2,所以,,又因為,所以,所以函數(shù),令,,得對稱中心,.(2)令,解得,,所以單調(diào)遞增區(qū)間為,【點睛】求y=Asin(ωx+φ)的解析式,條件不管以何種方式給出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的單調(diào)遞增區(qū)間、對稱軸方程、對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年男方凈身出戶財產(chǎn)轉(zhuǎn)讓合同3篇
- 二零二五年度生活垃圾處理設(shè)施安全評估合同3篇
- 2024鋁合金液態(tài)冶煉合同
- 二零二五年度農(nóng)業(yè)機械設(shè)備買賣合同中的使用性能擔(dān)保4篇
- 專利保密合同:2024年版版
- 2025年度新能源發(fā)電站建設(shè)勞務(wù)分包及設(shè)備安裝合同4篇
- 2025版農(nóng)村水電暖設(shè)施建設(shè)勞務(wù)合同模板2篇
- 二零二五年度鐵路客運站服務(wù)合同4篇
- 2025年企事業(yè)單位食堂整體承包運營合同4篇
- 二零二五年度物流企業(yè)信息化系統(tǒng)升級合同3篇
- 2024年二級建造師繼續(xù)教育題庫及答案(500題)
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學(xué)試卷
- 選煤廠安全知識培訓(xùn)課件
- 項目前期選址分析報告
- 急性肺栓塞搶救流程
- 《形象價值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學(xué)外來人員出入校門登記表
- 《土地利用規(guī)劃學(xué)》完整課件
評論
0/150
提交評論