空間向量點坐標求法課件_第1頁
空間向量點坐標求法課件_第2頁
空間向量點坐標求法課件_第3頁
空間向量點坐標求法課件_第4頁
空間向量點坐標求法課件_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

求空間直角坐標下點的坐標的方法廣西玉林高中.

高中數(shù)學教材中引入了空間向量坐標運算這一內(nèi)容,使得在解決立體幾何平行、垂直、夾角、距離等問題時更加程序化,只需代入公式進行代數(shù)運算即可,這里常常需要首先建立空間直角坐標系,求出所需點的坐標。求空間直角坐標下點的坐標的方法

.

廣西高考數(shù)學卷中立體幾何大題都是同時能用幾何法與向量法這兩種方法解題的,在用向量法方面,找點坐標的難度在逐年增大,很多學生因為求不出點坐標又不會用幾何法解題而丟分.求空間直角坐標下點的坐標的方法

.求空間直角坐標下點的坐標的方法

為解決求點坐標難的問題,現(xiàn)將在空間直角坐標系中求點坐標的方法整理總結,以求能突破在空間直角坐標系中求點坐標難的問題。如何寫出或求出空間直角坐標系下點的坐標?.例

在平行六面體ABCD-A1B1C1D1中,底面ABCD是矩形,AB=4,AD=2,平行六面體高為,頂點D在底面A1B1C1D1的射影O是C1D1中點,設△AB1D1的重心G,建立適當空間直角坐標系并寫出下列點的坐標。(1)A1、B1、A、D1;(2)G;(3)B;(4)若N為DD1上點,且ON⊥DD1寫出N坐標。ABCDB1C1D1A1O.例

在平行六面體ABCD-A1B1C1D1中,底面ABCD是矩形,AB=4,AD=2,平行六面體高為,頂點D在底面A1B1C1D1的射影O是C1D1中點,設△AB1D1的重心G,建立適當空間直角坐標系并寫出下列點的坐標。(1)A1、B1、A、D1;(2)G;(1)A1

(2,-2,0)

、B1

(2,2,0)、A(2,0,)、D1

(0,-2,0)

(2)射影法公式法yzxABCDB1C1D1A1O.例

在平行六面體ABCD-A1B1C1D1中,底面ABCD是矩形,AB=4,AD=2,平行六面體高為,頂點D在底面A1B1C1D1的射影O是C1D1中點,設△AB1D1的重心G,建立適當空間直角坐標系并寫出下列點的坐標。(3)B;(3)設B(x,y,z),則

又∵,比較得

∴點B坐標為

ABCDB1C1D1A1Oyzx向量法.例

在平行六面體ABCD-A1B1C1D1中,底面ABCD是矩形,AB=4,AD=2,平行六面體高為,頂點D在底面A1B1C1D1的射影O是C1D1中點.(4)若N為DD1上點,且ON⊥DD1寫出N坐標。ABCDB1C1D1A1OyzxN解:(4)∵

三點共線,可設即,

∵故向量法.求空間直角坐標下點的坐標的方法:

一、投影法

將空間點P分別投影到

x軸、

y軸、z軸所得投影點為A(a,0,0),B(0,b,0),C(0,0,c)則點P坐標為(a,b,c)。二、公式法

利用線段的中點坐標公式三角形的重心坐標公式、距離公式、夾角公式等求出點的坐標。三、向量法利用向量相等、垂直、共線等運算求出點坐標。.zxy例1.(2011廣西高考題)如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側面SAB為等邊三角形,AB=BC=2,CD=SD=1.(I)證明:

SD⊥平面SAB

;(II)求AB與平面SBC所成的角的大小解析:(I)設S(x,y,z)(x>0,y>0,z>0)

由得又∵得

解得y=,z=S(1,,)∴(II)arcsin.B例2如圖,一張平行四邊形的硬紙ABC0D中,AD=BD=1,AB=.沿它的對角線BD折起,使點C0到達平面外C點的位置。若求二面角A

BD

–C的大小。

zyx,

解析:如圖A(1,0,0)B(0,1,0)∵CB⊥DB∴可設C(x,1,z)(z>0)∵,x=z=,解得C(,1,)∴60°.

如圖,四面體ABCD中,CA=BC=CD=BD=2,AB=AD=,試在BC上找一點E,使點E到平面ACD的距離為.O.zxyO是

BD中點,AO⊥平面SAB

E.

如圖,四面體ABCD中,CA=BC=CD=BD=2,AB=AD=,試在BC上找一點E,使點E到平面ACD的距離為.Ozxy

解析一:x=y=,解得E(,,1

)故E為BC中點∴Ed==E.

如圖,四面體ABCD中,CA=BC=CD=2,AB=AD=,試在BC上找一點E,使點E到平面ACD的距離為.E.zxyE

解析二:平面ACD的平面方程為即到平面的距離=x=y=,解得E(,,1

)故E為BC中點∴O.如圖,已知AB⊥ɑ,

BCɑ,CD⊥BC,CD與平面ɑ成30°角,AB=BC=CD=2.(1)求線段AD的長;(2)求二面角D-AC-B的正弦值。B(0,0,0),A(0,0,2),C(0,2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論