




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東清遠恒大足球?qū)W校2024屆數(shù)學(xué)高二第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將三枚骰子各擲一次,設(shè)事件為“三個點數(shù)都不相同”,事件為“至少出現(xiàn)一個6點”,則概率的值為()A. B. C. D.2.已知復(fù)數(shù),則的虛部是()A. B. C.-4 D.43.已知三棱錐的體積為,,,,,且平面平面PBC,那么三棱錐外接球的體積為()A. B. C. D.4.如圖,陰影部分的面積是()A. B. C. D.5.已知與之間的一組數(shù)據(jù):01231357則與的線性回歸方程必過A. B. C. D.6.已知隨機變量服從二項分布,若,,則,分別等于()A., B., C., D.,7.已知、分別為的左、右焦點,是右支上的一點,與軸交于點,的內(nèi)切圓在邊上的切點為,若,則的離心率為()A. B. C. D.8.已知函數(shù)的定義域為,若對于,分別為某三角形的三邊長,則稱為“三角形函數(shù)”.給出下列四個函數(shù):①②③④.其中為“三角形函數(shù)”的個數(shù)是()A. B. C. D.9.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,給出下列四個命題:①若m∥n,m⊥β,則n⊥β;②若m∥α,m∥β,則α∥β;③若m∥n,m∥β,則n∥β;④若m⊥α,m⊥β,則α⊥β.其中真命題的個數(shù)為()A.1B.2C.3D.410.若,則,.設(shè)一批白熾燈的壽命(單位:小時)服從均值為1000,方差為400的正態(tài)分布,隨機從這批白熾燈中選取一只,則()A.這只白熾燈的壽命在980小時到1040小時之間的概率為0.8186B.這只白熾燈的壽命在600小時到1800小時之間的概率為0.8186C.這只白熾燈的壽命在980小時到1040小時之間的概率為0.9545D.這只白熾燈的壽命在600小時到1800小時之間的概率為0.954511.當函數(shù)y=x?2x取極小值時,A.1ln2 B.-1ln12.由無理數(shù)引發(fā)的數(shù)學(xué)危機一直延續(xù)到19世紀,直到1872年,德國數(shù)學(xué)家戴德金提出了“戴德金分割”,才結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機.所謂戴德金分割,是指將有理數(shù)集劃分為兩個非空的子集與,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中不可能成立的是A.沒有最大元素,有一個最小元素B.沒有最大元素,也沒有最小元素C.有一個最大元素,有一個最小元素D.有一個最大元素,沒有最小元素二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量的分布列如下表:其中是常數(shù),則的值為_______.14.已知向量與的夾角為120°,且,,則__________.15.已知,且,則的最小值是______________.16.為了了解學(xué)校(共三個年級)的數(shù)學(xué)學(xué)習(xí)情況,教導(dǎo)處計算高一、高二、高三三個年級的平均成績分別為,并進行數(shù)據(jù)分析,其中三個年級數(shù)學(xué)平均成績的標準差為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,設(shè)命題:函數(shù)在上為減函數(shù),命題:不等式對恒成立,若為假命題,為真命題,求的取值范圍.18.(12分)已知函數(shù)(1)試討論在極值點的個數(shù);(2)若函數(shù)的兩個極值點為,且,為的導(dǎo)函數(shù),設(shè),求實數(shù)的取值范圍.19.(12分)已知數(shù)列的前項和滿足,且。(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和。20.(12分)已知拋物線與橢圓有共同的焦點,過點的直線與拋物線交于兩點.(Ⅰ)求拋物線的方程;(Ⅱ)若,求直線的方程.21.(12分)某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團和演講社團的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團
未參加書法社團
參加演講社團
未參加演講社團
(1)從該班隨機選名同學(xué),求該同學(xué)至少參加上述一個社團的概率;(2)在既參加書法社團又參加演講社團的名同學(xué)中,有5名男同學(xué)名女同學(xué)現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機選人,求被選中且未被選中的概率.22.(10分)在中,角的對邊分別為,.(1)求;(2)若,,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】考點:條件概率與獨立事件.分析:本題要求條件概率,根據(jù)要求的結(jié)果等于P(AB)÷P(B),需要先求出AB同時發(fā)生的概率,除以B發(fā)生的概率,根據(jù)等可能事件的概率公式做出要用的概率.代入算式得到結(jié)果.解:∵P(A|B)=P(AB)÷P(B),P(AB)==P(B)=1-P()=1-=1-=∴P(A/B)=P(AB)÷P(B)==故選A.2、A【解題分析】
利用復(fù)數(shù)運算法則及虛部定義求解即可【題目詳解】由,得,所以虛部為.故選A【題目點撥】本題考查復(fù)數(shù)的四則運算,復(fù)數(shù)的虛部,考查運算求解能力.3、D【解題分析】試題分析:取中點,連接,由知,則,又平面平面,所以平面,設(shè),則,又,則,,,,顯然是其外接球球心,因此.故選D.考點:棱錐與外接球,體積.4、C【解題分析】由定積分的定義可得,陰影部分的面積為.本題選擇C選項.點睛:利用定積分求曲線圍成圖形的面積的步驟:(1)畫出圖形;(2)確定被積函數(shù);(3)確定積分的上、下限,并求出交點坐標;(4)運用微積分基本定理計算定積分,求出平面圖形的面積.求解時,注意要把定積分與利用定積分計算的曲線圍成圖形的面積區(qū)別開:定積分是一個數(shù)值(極限值),可為正,可為負,也可為零,而平面圖形的面積在一般意義上總為正.5、B【解題分析】
先求出x的平均值,y的平均值,回歸直線方程一定過樣本的中心點(,),代入可得答案.【題目詳解】解:回歸直線方程一定過樣本的中心點(,),,∴樣本中心點是(1.5,4),則y與x的線性回歸方程y=bx+a必過點(1.5,4),故選B.【題目點撥】本題考查平均值的計算方法,回歸直線的性質(zhì):回歸直線方程一定過樣本的中心點(,).6、C【解題分析】分析:直接利用二項分布的期望與方差列出方程求解即可.詳解:隨機變量服從二項分布,若,,
可得故選:C.點睛:本題考查離散型隨機變量的分布列的期望以及方差的求法,考查計算能力.7、A【解題分析】
由中垂線的性質(zhì)得出,利用圓的切線長定理結(jié)合雙曲線的定義得出,可得出的值,再結(jié)合的值可求出雙曲線的離心率的值.【題目詳解】如圖所示,由題意,,由雙曲線定義得,由圓的切線長定理可得,所以,,,即,所以,雙曲線的離心率,故選:A.【題目點撥】本題考查雙曲線離心率的求解,同時也考查了雙曲線的定義以及圓的切線長定理的應(yīng)用,解題時要分析出幾何圖形的特征,在出現(xiàn)焦點時,一般要結(jié)合雙曲線的定義來求解,考查分析問題和解決問題的能力,屬于中等題.8、B【解題分析】
根據(jù)構(gòu)成三角形條件,可知函數(shù)需滿足,由四個函數(shù)解析式,分別求得其值域,即可判斷是否滿足不等式成立.【題目詳解】根據(jù)題意,對于,分別為某三角形的三邊長,由三角形性質(zhì)可知需滿足:對于①,,如當時不能構(gòu)成三角形,所以①不是“三角形函數(shù)”;對于②,,則,滿足,所以②是“三角形函數(shù)”;對于③,,則,當時不能構(gòu)成三角形,所以③不是“三角形函數(shù)”;對于④,,由指數(shù)函數(shù)性質(zhì)可得,滿足,所以④是“三角形函數(shù)”;綜上可知,為“三角形函數(shù)”的有②④,故選:B.【題目點撥】本題考查了函數(shù)新定義的綜合應(yīng)用,函數(shù)值域的求法,三角形構(gòu)成的條件應(yīng)用,屬于中檔題.9、A【解題分析】對于①,由直線與平面垂直的判定定理易知其正確;對于②,平面α與β可能平行或相交,故②錯誤;對于③,直線n可能平行于平面β,也可能在平面β內(nèi),故③錯誤;對于④,由兩平面平行的判定定理易得平面α與β平行,故④錯誤.綜上所述,正確命題的個數(shù)為1,故選A.10、A【解題分析】
先求出,,再求出和,即得這只白熾燈的壽命在980小時到1040小時之間的概率.【題目詳解】∵,,∴,,所以,,∴.故選:A【題目點撥】本題主要考查正態(tài)分布的圖像和性質(zhì),考查指定區(qū)間的概率的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.11、B【解題分析】分析:對函數(shù)求導(dǎo),由y'=2x詳解:y'=即1+xln2=0,x=-點睛:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值問題,屬于基礎(chǔ)題12、C【解題分析】試題分析:設(shè),顯然集合M中沒有最大元素,集合N中有一個最小元素,即選項A可能;,顯然集合M中沒有最大元素,集合N中也沒有最小元素,即選項B可能;,顯然集合M中有一個最大元素,集合N中沒有最小元素,即選項D可能;同時,假設(shè)答案C可能,即集合M、N中存在兩個相鄰的有理數(shù),顯然這是不可能的,故選C.考點:以集合為背景的創(chuàng)新題型.【方法點睛】創(chuàng)新題型,應(yīng)抓住問題的本質(zhì),即理解題中的新定義,脫去其“新的外衣”,轉(zhuǎn)化為熟悉的知識點和題型上來.本題即為,有理數(shù)集的交集和并集問題,只是考查兩個子集中元素的最值問題,即集合M、N中有無最大元素和最小元素.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)分布列中概率和為可構(gòu)造方程求得,由求得結(jié)果.【題目詳解】由分布列可知:,解得:則本題正確結(jié)果:【題目點撥】本題考查分布列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、7【解題分析】由題意得,則715、【解題分析】
有錯,可以接著利用基本不等式解得最小值.【題目詳解】∵,∴,,當且僅當時不等式取等號,∴,故的最小值是.【題目點撥】本題主要考查利用基本不等式求最值的問題,巧用“”,是解決本題的關(guān)鍵.16、【解題分析】
根據(jù)方差公式計算方差,然后再得標準差.【題目詳解】三個數(shù)的平均值為115,方差為,∴標準差為.故答案為:.【題目點撥】本題考查標準差,注意到方差是標準差的平方,因此可先計算方差.方差公式為:數(shù)據(jù)的方差為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、.【解題分析】
化簡命題可得,化簡命題可得,由為真命題,為假命題,可得一真一假,分兩種情況討論,對于真假以及假真分別列不等式組,分別解不等式組,然后求并集即可求得實數(shù)的取值范圍.【題目詳解】∵:函數(shù)在上為減函數(shù),∴,即.∵:不等式對一切恒成立,∴或,即.∵為假命題,為真命題,∴,一真一假,若真假,則,此時不存在,若假真,則,解得或.∴的取值范圍為.【題目點撥】本題通過判斷或命題、且命題以及非命題的真假,綜合考查指數(shù)函數(shù)的性質(zhì)以及不等式恒成立問題,屬于中檔題.解答非命題、且命題與或命題真假有關(guān)的題型時,應(yīng)注意:(1)原命題與其非命題真假相反;(2)或命題“一真則真”;(3)且命題“一假則假”.18、(1)見解析;(2)【解題分析】
(1)對函數(shù)求導(dǎo),討論導(dǎo)函數(shù)的正負,即可得到函數(shù)的單調(diào)性,從而可求出極值的個數(shù);(2)先求出函數(shù)的表達式,進而可得到極值點的關(guān)系,可用來表示及,代入的表達式,然后構(gòu)造函數(shù)關(guān)于的函數(shù),求出值域即可.【題目詳解】解:(1)易知定義域為,.①當時,恒成立,在為增函數(shù),沒有極值點;②當時,恒成立,在為增函數(shù),沒有極值點;③當時,,由,令得,令得,則在上單調(diào)遞減,在單調(diào)遞增,故只有一個極大值點,沒有極小值點;④當時,由,令得,令得,則在上單調(diào)遞增,在單調(diào)遞減,故只有一個極小值點,沒有極大值點.(2)由條件得且有兩個根,滿足,或,因為,所以,故符合題意.因為函數(shù)的對稱軸,,所以.,則,因為,所以,,,令,則,顯然在上單調(diào)遞減,在單調(diào)遞增,,,則.故的取值范圍是.【題目點撥】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問題,考查了函數(shù)的單調(diào)性與最值,考查了轉(zhuǎn)化思想與分類討論思想,屬于難題.19、(1)(2)【解題分析】
(1)利用,求得數(shù)列的通項公式.(2)利用裂項求和法求得數(shù)列的前項和.【題目詳解】解:(1)當時,,∵,∴,當時,,∴,∵,∴,∴,∴是以為首項,為公差的等差數(shù)列,∴;(2)由(1)得,∴,∴?!绢}目點撥】本小題主要考查利用求數(shù)列的通項公式,考查裂項求和法,屬于中檔題.20、(Ⅰ)拋物線的方程為;(Ⅱ)直線的方程為或.【解題分析】分析:(Ⅰ)由題意可知橢圓的焦點坐標為,則,拋物線的方程為.(Ⅱ)依題意,可設(shè)直線的方程為.聯(lián)立直線方程與拋物線方程可得,結(jié)合韋達定理可得則,解得.直線的方程為或.詳解:(Ⅰ)因為橢圓的焦點坐標為,而拋物線與橢圓有共同的焦點,所以,解得,所以拋物線的方程為.(Ⅱ)依題意,可設(shè)直線的方程為.聯(lián)立,整理得,由題意,,所以或.則.則,.則又已知,所以,解得.所以直線的方程為或.化簡得直線的方程為或.點睛:(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.21、(1);(2).【解題分析】(1)由調(diào)查數(shù)據(jù)可知,既未參加書法社團又未參加演講社團的有人,故至少參加上述一個社團的共有人,所以從該班級隨機選名同學(xué),該同學(xué)至少參加
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國斷電型限時繼電器數(shù)據(jù)監(jiān)測報告
- 2025年中國數(shù)字式風(fēng)機盤管恒溫器市場調(diào)查研究報告
- 2025-2030年中國DSP芯片市場運行態(tài)勢及投資前景規(guī)劃研究報告
- 新疆生產(chǎn)建設(shè)兵團興新職業(yè)技術(shù)學(xué)院《海洋生物資源調(diào)查技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆烏魯木齊七十中2025年高三下學(xué)期第二次診斷性測驗語文試題含解析
- 2025年中國濃縮風(fēng)擋玻璃保護清潔劑數(shù)據(jù)監(jiān)測報告
- 老年人腹部手術(shù)麻醉管理專家共識
- 2025至2031年中國電表零件行業(yè)投資前景及策略咨詢研究報告
- 2025-2030工業(yè)燃油行業(yè)市場深度分析及發(fā)展前景與投資機會研究報告
- 2025-2030年中國IT運維管理行業(yè)發(fā)展戰(zhàn)略調(diào)查及供需格局分析預(yù)測研究報告
- 房室折返性心動過速課件
- 直飲水工程施工組織設(shè)計
- 2022年山東中煙工業(yè)有限責(zé)任公司滕州卷煙廠招聘筆試題庫及答案解析
- 急救技術(shù)氣道開放技術(shù)課件
- 監(jiān)理整改回復(fù)單(模板)
- 招貼設(shè)計 課件完整版
- 杭州市主城區(qū)聲環(huán)境功能區(qū)劃分圖
- 6G項目實施方案參考模板
- 居民企業(yè)資產(chǎn)股權(quán)劃轉(zhuǎn)特殊性稅務(wù)處理申報表
- 高層建筑無地下室傾覆及滑移計算
- 廣東省東莞市第二人民法院
評論
0/150
提交評論