版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
阜陽潁南中學2023年數(shù)學九上期末教學質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在矩形中,,在上取一點,沿將向上折疊,使點落在上的點處,若四邊形與矩形相似,則的長為()A. B. C. D.12.如圖,某中學計劃靠墻圍建一個面積為的矩形花圃(墻長為),圍欄總長度為,則與墻垂直的邊為()A.或 B. C. D.3.下列命題正確的是()A.長度為5cm、2cm和3cm的三條線段可以組成三角形B.的平方根是±4C.是實數(shù),點一定在第一象限D(zhuǎn).兩條直線被第三條直線所截,同位角相等4.太陽與地球之間的平均距離約為150000000km,用科學記數(shù)法表示這一數(shù)據(jù)為()A.1.5×108km B.15×107km C.0.15×109km D.1.5×109km5.如圖,在△ABC中,D、E分別是BC、AC上的點,且DE∥AB,若S△CDE:S△BDE=1:3,則S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:206.如圖,在△ABC中,E,G分別是AB,AC上的點,∠AEG=∠C,∠BAC的平分線AD交EG于點F,若,則()A. B. C. D.7.下列式子中表示是關于的反比例函數(shù)的是()A. B. C. D.8.如圖,一個正六邊形轉(zhuǎn)盤被分成6個全等三角形,任意轉(zhuǎn)動這個轉(zhuǎn)盤1次,當轉(zhuǎn)盤停止時,指針指向陰影區(qū)域的概率是()A. B. C. D.9.如圖,在中,,,垂足為點,如果,,那么的長是()A.4 B.6 C. D.10.我校小偉同學酷愛健身,一天去爬山鍛煉,在出發(fā)點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點B(B、C、D同一水平線上),斜坡AB的坡度為2:1,且AB長為900,其中小偉走平路的速度為65.7米/分,走上坡路的速度為42.3米/分.則小偉從C出發(fā)到坡頂A的時間為()(圖中所有點在同一平面內(nèi)≈1.41,≈1.73)A.60分鐘 B.70分鐘 C.80分鐘 D.90分鐘二、填空題(每小題3分,共24分)11.用紙板制作了一個圓錐模型,它的底面半徑為1,高為,則這個圓錐的側(cè)面積為_________.12.在△ABC中,∠C=90°,若AC=6,BC=8,則△ABC外接圓半徑為________;13.若關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.14.如圖,在矩形紙片中,將沿翻折,使點落在上的點處,為折痕,連接;再將沿翻折,使點恰好落在上的點處,為折痕,連接并延長交于點,若,,則線段的長等于_____.15.反比例函數(shù)y=的圖象分布在第一、三象限內(nèi),則k的取值范圍是______.16.正的邊長為,邊長為的正的頂點與點重合,點分別在,上,將沿邊順時針連續(xù)翻轉(zhuǎn)(如圖所示),直至點第一次回到原來的位置,則點運動路徑的長為(結(jié)果保留)17.如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.18.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.三、解答題(共66分)19.(10分)如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處,已知BC=10厘米,AB=8厘米,求FC的長.20.(6分)如圖,,點是線段的一個三等分點,以點為圓心,為半徑的圓交于點,交于點,連接(1)求證:是的切線;(2)點為上的一動點,連接.①當時,四邊形是菱形;②當時,四邊形是矩形.21.(6分)如圖,在Rt△ABC中,∠ACB=90°.(1)利用尺規(guī)作圖,在BC邊上求作一點P,使得點P到邊AB的距離等于PC的長;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)(2)在(1)的條件下,以點P為圓心,PC長為半徑的⊙P中,⊙P與邊BC相交于點D,若AC=6,PC=3,求BD的長.22.(8分)已知拋物線y=2x2-12x+13(1)當x為何值時,y有最小值,最小值是多少?(2)當x為何值時,y隨x的增大而減小(3)將該拋物線向右平移2個單位,再向上平移2個單位,請直接寫出新拋物線的表達式23.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+624.(8分)如圖,在同一平面直角坐標系中,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A,B兩點,過點A作AC⊥x軸,垂足為點C,AC=2,求k的值.25.(10分)如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,,擺動臂可繞點旋轉(zhuǎn),.(1)在旋轉(zhuǎn)過程中①當、、三點在同一直線上時,求的長,②當、、三點為同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉(zhuǎn),點的位置由外的點轉(zhuǎn)到其內(nèi)的點處,如圖2,此時,,求的長.(3)若連接(2)中的,將(2)中的形狀和大小保持不變,把繞點在平面內(nèi)自由旋轉(zhuǎn),分別取、、的中點、、,連接、、、隨著繞點在平面內(nèi)自由旋轉(zhuǎn),的面積是否發(fā)生變化,若不變,請直接寫出的面積;若變化,的面積是否存在最大與最小?若存在,請直接寫出面積的最大值與最小值,(溫馨提示)26.(10分)解方程:(1)x2-3x+1=1;(2)x(x+3)-(2x+6)=1.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】可設AD=x,由四邊形EFDC與矩形ABCD相似,根據(jù)相似多邊形對應邊的比相等列出比例式,求解即可.【詳解】解:∵AB=1,可得AF=BE=1,
設DF=x,則AD=x+1,F(xiàn)E=1,
∵四邊形EFDC與矩形ABCD相似,∴,即:,解得,(不合題意舍去),經(jīng)檢驗是原方程的解,∴DF的長為,故選C.【點睛】本題考查了翻折變換(折疊問題),相似多邊形的性質(zhì),本題的關鍵是根據(jù)四邊形EFDC與矩形ABCD相似得到比例式.2、C【分析】設與墻相對的邊長為(28-2x)m,根據(jù)題意列出方程x(28-2x)=80,求解即可.【詳解】設與墻相對的邊長為(28-2x)m,則0<28-2x≤12,解得8≤x<14,根據(jù)題意列出方程x(28-2x)=80,解得x1=4,x2=10因為8≤x<14∴與墻垂直的邊為10m故答案為C.【點睛】本題考查一元二次方程的應用,根據(jù)題意列出方程并求解是解題的關鍵,注意題中限制條件,選取適合的x值.3、C【分析】根據(jù)三角形三邊關系、平方根的性質(zhì)、象限的性質(zhì)、平行線的性質(zhì)進行判斷即可.【詳解】A.長度為5cm、2cm和3cm的三條線段不可以組成三角形,錯誤;B.的平方根是±2,錯誤;C.是實數(shù),點一定在第一象限,正確;D.兩條平行線被第三條直線所截,同位角相等,錯誤;故答案為:C.【點睛】本題考查了判斷命題真假的問題,掌握三角形三邊關系、平方根的性質(zhì)、象限的性質(zhì)、平行線的性質(zhì)是解題的關鍵.4、A【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于150000000有9位,所以可以確定n=9-1=1.【詳解】150000000km=1.5×101km.故選:A.【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.5、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,進而得到CD:BC=1:4,然后根據(jù)DE∥AB可得△CDE∽△CAB,利用相似三角形的性質(zhì)得到,然后根據(jù)面積和差可求得答案.【詳解】解:過點H作EH⊥BC交BC于點H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故選:B.【點睛】本題綜合考查相似三角形的判定與性質(zhì),三角形的面積等知識,解題關鍵是掌握相似三角形的判定與性質(zhì).6、C【分析】根據(jù)兩組對應角相等可判斷△AEG∽△ACB,△AEF∽△ACD,再得出線段間的比例關系進行計算即可得出結(jié)果.【詳解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故選C.【點睛】本題考查了相似三角形的判定,解答本題,要找到兩組對應角相等,再利用相似的性質(zhì)求線段的比值.7、C【解析】根據(jù)反比例函數(shù)的定義進行判斷.【詳解】解:A.是正比例函數(shù),此選項錯誤;B.是正比例函數(shù),此選項錯誤;C.是反比例函數(shù),此選項正確;D.是一次函數(shù),此選項錯誤.故選:C.【點睛】本題考查了反比例函數(shù)的定義,重點是將一般式(k≠0)轉(zhuǎn)化為(k≠0)的形式.8、C【解析】試題分析:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成6部分,陰影部分占2份,轉(zhuǎn)盤停止轉(zhuǎn)動時指針指向陰影部分的概率是=;故選C.考點:幾何概率.9、C【分析】證明△ADC∽△CDB,根據(jù)相似三角形的性質(zhì)求出CD、BD,根據(jù)勾股定理求出BC.【詳解】∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠A+∠ACD=90°,
∴∠A=∠BCD,又∠ADC=∠CDB,
∴△ADC∽△CDB,
∴,,
∴,即,
解得,CD=6,
∴,
解得,BD=4,
∴BC=,
故選:C.【點睛】此題考查相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關鍵.10、C【分析】如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.想辦法求出AQ、CQ即可解決問題.【詳解】解:如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.由題意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小偉從C出發(fā)到坡頂A的時間=≈80(分鐘),故選:C.【點睛】本題考查了解直角三角形的應用,熟練掌握并靈活運用是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)圓錐的側(cè)面積公式計算即可得到結(jié)果.【詳解】解:根據(jù)題意得:S=π×1×=3π,
故填:3π.【點睛】此題考查了圓錐的計算,熟練掌握圓錐的側(cè)面積公式是解本題的關鍵.12、5【分析】先確定外接圓的半徑是AB,圓心在AB的中點,再計算AB的長,由此求出外接圓的半徑為5.【詳解】∵在△ABC中,∠C=90°,∴△ABC外接圓直徑為斜邊AB、圓心是AB的中點,∵∠C=90°,AC=6,BC=8,∴,∴△ABC外接圓半徑為5.故答案為:5.【點睛】此題考查勾股定理的運用、三角形外接圓的確定.根據(jù)圓周角定理,直角三角形的直角所對的邊為直徑,即可確定圓的位置及大小.13、k<5且k≠1.【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且14、.【分析】根據(jù)折疊可得是正方形,,,,可求出三角形的三邊為3,4,5,在中,由勾股定理可以求出三邊的長,通過作輔助線,可證∽,三邊占比為3:4:5,設未知數(shù),通過,列方程求出待定系數(shù),進而求出的長,然后求的長.【詳解】過點作,,垂足為、,由折疊得:是正方形,,,,,∴,在中,,∴,在中,設,則,由勾股定理得,,解得:,∵,,∴∽,∴,設,則,,∴,,解得:,∴,∴,故答案為.【點睛】考查折疊軸對稱的性質(zhì),矩形、正方形的性質(zhì),直角三角形的性質(zhì)等知識,知識的綜合性較強,是有一定難度的題目.15、k>0【詳解】∵反比例函數(shù)的圖象在一、三象限,∴k>0,16、【解析】從圖中可以看出翻轉(zhuǎn)的第一次是一個120度的圓心角,半徑是1,所以弧長=,第二次是以點P為圓心,所以沒有路程,在BC邊上,第一次第二次同樣沒有路程,AC邊上也是如此,點P運動路徑的長為17、45°【詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.18、3或1.2【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為1.2或3.【點睛】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點P在線段BD上是解題的關鍵.三、解答題(共66分)19、4cm【解析】試題分析:想求得FC,EF長,那么就需求出BF的長,利用直角三角形ABF,使用勾股定理即可求得BF長.試題解析:折疊長方形一邊AD,點D落在BC邊的點F處,所以AF=AD=BC=10厘米(2分)在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2∴82+BF2=102∴BF=6(厘米)∴FC=10-6=4(厘米).答:FC長為4厘米.考點:1.翻折變換(折疊問題);2.矩形的性質(zhì).20、(1)見解析;(2)①60°,②120°.【分析】(1)連接,由,得到為等邊三角形,得到,即可得到,則結(jié)論成立;(2)①連接BD,由圓周角定理,得到∠ABD=30°,則∠DBE=60°,又有∠BEP=120°,根據(jù)同旁內(nèi)角互補得到PE//DB,然后證明,即可得到答案;②由圓周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直徑所對的圓周角為90°,得到,即可得到答案.【詳解】證明:連接,,.,為等邊三角形,.點是的三等分點,,,,即,是的切線.(2)①當時,四邊形是菱形;如圖,連接BD,∵,∴,∴,∵AB為直徑,則∠AEB=90°,由(1)知,∴,∴,∴PE//DB,∵,,∴,∴四邊形是菱形;故答案為:60°.②當時,四邊形是矩形.如圖,連接AE、AD、DB,∵,∴,∴,∵AB是直徑,∴,∴四邊形是矩形.故答案為:.【點睛】本題考查了圓的切線的判定和性質(zhì),圓周角定理,菱形的判定和矩形的判定,解題的關鍵是正確作出輔助線,利用圓的性質(zhì)進行解題.21、(1)如圖所示,見解析;(1)BD的長為1.【分析】(1)根據(jù)題意可知要作∠A的平分線,按尺規(guī)作圖的要求作角平分線即可;(1)由切線長定理得出AC=AE,設BD=x,BE=y(tǒng),則BC=6+x,BP=3+x,通過△PEB∽△ACB可得出,從而建立一個關于x,y的方程,解方程即可得到BD的長度.【詳解】(1)如圖所示:作∠A的平分線交BC于點P,點P即為所求作的點.(1)作PE⊥AB于點E,則PE=PC=3,∴AB與圓相切,∵∠ACB=90°,∴AC與圓相切,∴AC=AE,設BD=x,BE=y(tǒng),則BC=6+x,BP=3+x,∵∠B=∠B,∠PEB=∠ACB,∴△PEB∽△ACB∴∴解得x=1,答:BD的長為1.【點睛】本題主要考查尺規(guī)作圖及相似三角形的判定及性質(zhì),掌握相似三角形的判定及性質(zhì)是解題的關鍵.22、(1)當x=3時,y有最小值,最小值是-5;(2)當x<3時,y隨x的增大而減??;(3)y=2x2-20x+47.【分析】(1)將二次函數(shù)的一般式轉(zhuǎn)化為頂點式,即可求出結(jié)論;(2)根據(jù)拋物線的開口方向和對稱軸左右兩側(cè)的增減性即可得出結(jié)論;(3)根據(jù)拋物線的平移規(guī)律:括號內(nèi)左加右減,括號外上加下減,即可得出結(jié)論.【詳解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴當x=3時,y有最小值,最小值是-5;(2)∵2>0,對稱軸為x=3∴拋物線的開口向上∴當x<3時,y隨x的增大而減?。唬?)∵將該拋物線向右平移2個單位,再向上平移2個單位,∴平移后的解析式為:y=2(x-3-2)2-5+2=2(x-5)2-3即新拋物線的表達式為y=2x2-20x+47【點睛】此題考查的是二次函數(shù)的圖像及性質(zhì),掌握用二次函數(shù)的頂點式求最值、二次函數(shù)的增減性和二次函數(shù)的平移規(guī)律是解決此題的關鍵.23、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【詳解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,開方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.【點睛】此題考查了解一元二次方程﹣因式分解法,以及配方法,熟練掌握各種解法是解本題的關鍵.24、k=1【分析】根據(jù)題意A的縱坐標為1,把y=1代入y=1x,求得A的坐標,然后根據(jù)待定系數(shù)法即可求得k的值.【詳解】解:∵AC⊥x軸,AC=1,∴A的縱坐標為1,∵正比例函數(shù)y=1x的圖象經(jīng)過點A,∴1x=1,解得x=1,∴A(1,1),∵反比例函數(shù)y=的圖象
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電商直播帶貨合作合同12篇
- 2025年車輛識別一體機銷售與系統(tǒng)集成合同范本4篇
- 2025年度云計算服務合同模板(二零二五年度)4篇
- 2025年度出納崗位競聘聘用合同模板4篇
- 個人健康咨詢服務合同(2024版)6篇
- 2025年度高新技術研發(fā)中心代理記賬與研發(fā)資助合同3篇
- 二零二五年度抹灰施工安全培訓師資力量培訓合同4篇
- 二零二五年度醫(yī)療機構(gòu)疫情防控物資采購合同-公司口罩采購合同范本9篇
- 節(jié)日營銷策略在小區(qū)超市的實踐與思考
- 2025年中國轉(zhuǎn)向支撐梁組件市場調(diào)查研究報告
- 2024年甘肅省武威市、嘉峪關市、臨夏州中考英語真題
- DL-T573-2021電力變壓器檢修導則
- 繪本《圖書館獅子》原文
- 安全使用公共WiFi網(wǎng)絡的方法
- 2023年管理學原理考試題庫附答案
- 【可行性報告】2023年電動自行車相關項目可行性研究報告
- 歐洲食品與飲料行業(yè)數(shù)據(jù)與趨勢
- 放療科室規(guī)章制度(二篇)
- 中高職貫通培養(yǎng)三二分段(中職階段)新能源汽車檢測與維修專業(yè)課程體系
- 浙江省安全員C證考試題庫及答案(推薦)
- 目視講義.的知識
評論
0/150
提交評論