




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年廣東省深圳市寶安區(qū)高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若關(guān)于的不等式有正整數(shù)解,則實(shí)數(shù)的最小值為()A. B. C. D.2.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.3.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.4.陀螺是中國(guó)民間較早的娛樂(lè)工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線畫出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.5.等比數(shù)列若則()A.±6 B.6 C.-6 D.6.《九章算術(shù)》“少?gòu)V”算法中有這樣一個(gè)數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡(jiǎn),又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個(gè)照此同樣方法,直至全部為整數(shù),例如:及時(shí),如圖:記為每個(gè)序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17647.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.28.在邊長(zhǎng)為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.9.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.10.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.11.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-312.函數(shù)f(x)=lnA. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為_(kāi)_______.14.已知實(shí)數(shù),滿足,則的最大值為_(kāi)_____.15.已知,分別是橢圓:()的左、右焦點(diǎn),過(guò)左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),且,,則橢圓的離心率為_(kāi)_________.16.已知拋物線的焦點(diǎn)為,斜率為的直線過(guò)且與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),若在第一象限,那么_______________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意的,當(dāng)時(shí),都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)18.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求的前項(xiàng)和及使得最小的的值.19.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過(guò)程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.21.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.22.(10分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實(shí)數(shù)的最小值.【詳解】因?yàn)椴坏仁接姓麛?shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時(shí),,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時(shí),,故,解得.故選:A.【點(diǎn)睛】本題主要考查不等式能成立問(wèn)題的解法,涉及到對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.2、D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.3、C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對(duì)應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,所以,其中,故選C【點(diǎn)睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對(duì)應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.4、C【解析】
根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒(méi)被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.5、B【解析】
根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.6、A【解析】
根據(jù)題目所給的步驟進(jìn)行計(jì)算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點(diǎn)睛】本小題主要考查合情推理,考查中國(guó)古代數(shù)學(xué)文化,屬于基礎(chǔ)題.7、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.8、C【解析】
根據(jù)平面向量基本定理,用來(lái)表示,然后利用數(shù)量積公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.9、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對(duì)選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)椋环?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.10、B【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.11、B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.12、C【解析】因?yàn)閒x=lnx2-4x+4x-23=二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)坐標(biāo),并將該交點(diǎn)代入拋物線的方程,即可求出實(shí)數(shù)的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準(zhǔn)線方程為,漸近線方程為,所以,該雙曲線右準(zhǔn)線與漸近線的交點(diǎn)為.由題意得,解得.故答案為:.【點(diǎn)睛】本題考查利用拋物線上的點(diǎn)求參數(shù),涉及到雙曲線的準(zhǔn)線與漸近線方程的應(yīng)用,考查計(jì)算能力,屬于中等題.14、【解析】
畫出不等式組表示的平面區(qū)域,將目標(biāo)函數(shù)理解為點(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因?yàn)榭梢岳斫鉃辄c(diǎn)與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當(dāng)且僅當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),斜率取得最大值,故的最大值為.故答案為:.【點(diǎn)睛】本題考查目標(biāo)函數(shù)為斜率型的規(guī)劃問(wèn)題,屬基礎(chǔ)題.15、【解析】
設(shè),則,,由知,,,作,垂足為C,則C為的中點(diǎn),在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因?yàn)?所以,,作,垂足為C,則C為的中點(diǎn),在中,因?yàn)?所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點(diǎn)睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點(diǎn)三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、常考題型.16、2【解析】
如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因?yàn)?所以,過(guò)點(diǎn)A、B分別作準(zhǔn)線的垂線,垂足分別為M,N,過(guò)點(diǎn)B作于點(diǎn)E,設(shè)|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因?yàn)?所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,考查拋物線的定義,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)2【解析】
(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對(duì)分成,兩種情況進(jìn)行分類討論.當(dāng)時(shí),將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過(guò)點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時(shí),顯然成立;當(dāng)時(shí),不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點(diǎn).且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1)(2);時(shí),取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項(xiàng)公式為(2)由(1)知時(shí),取得最小值.【點(diǎn)睛】本題解題關(guān)鍵是掌握等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.19、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡(jiǎn)得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達(dá)定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點(diǎn)睛】本題考查了極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)和普通方程的互化,以及參數(shù)方程的綜合知識(shí),結(jié)合等比數(shù)列,熟練運(yùn)用知識(shí),屬于較易題.20、(1)或;(2)【解析】
(1)使用零點(diǎn)分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價(jià)轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當(dāng)時(shí),原不等式可化為.①當(dāng)時(shí),則,所以;②當(dāng)時(shí),則,所以;⑧當(dāng)時(shí),則,所以.綜上所述:當(dāng)時(shí),不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查零點(diǎn)分段求解含絕對(duì)值不等式,熟練使用分類討論的方法,以及知識(shí)的交叉應(yīng)用,同時(shí)掌握等價(jià)轉(zhuǎn)化的思想,屬中檔題.21、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.22、(1)見(jiàn)解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度道路貨物運(yùn)輸市場(chǎng)拓展合同
- 二零二五年度現(xiàn)代服務(wù)業(yè)商鋪?zhàn)赓U與業(yè)務(wù)拓展合同
- 二零二五年度員工環(huán)境責(zé)任意識(shí)培訓(xùn)合同
- 二零二五年度企業(yè)借款合同額度調(diào)整服務(wù)協(xié)議
- 二零二五年度拆除舊供熱管道及節(jié)能改造及供暖保障合同
- 二零二五年度企業(yè)團(tuán)建旅游保險(xiǎn)配套合同
- 2025年度定制化辦公場(chǎng)地租賃合同
- 2025年度土地經(jīng)營(yíng)權(quán)流轉(zhuǎn)與農(nóng)業(yè)產(chǎn)業(yè)化合作框架協(xié)議
- 2025年度教育培訓(xùn)機(jī)構(gòu)在線教育平臺(tái)運(yùn)營(yíng)數(shù)據(jù)保密合同
- 2025年度家居店店長(zhǎng)入股合作協(xié)議書
- 新版統(tǒng)編版一年級(jí)道德與法治下冊(cè)全冊(cè)教案(完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- 2025年春季學(xué)期學(xué)校德育工作計(jì)劃安排表(完整版)
- 《幼兒教育政策與法規(guī)》教案-單元4 幼兒園的保育和教育
- 電氣化基本知識(shí)-崗培教材編寫86課件講解
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 二手人防車位使用權(quán)轉(zhuǎn)讓協(xié)議書
- 人工智能需求文檔6篇
- 物業(yè)集團(tuán)績(jī)效考核管理制度(完整版)
- 半導(dǎo)體真空精密部件清洗再生項(xiàng)目可行性研究報(bào)告-立項(xiàng)申請(qǐng)報(bào)告
- 外國(guó)人商務(wù)訪問(wèn)邀請(qǐng)函中英文模板
- HCG化驗(yàn)單(最新整理)
評(píng)論
0/150
提交評(píng)論