統(tǒng)計思想英文版課件Cha課件_第1頁
統(tǒng)計思想英文版課件Cha課件_第2頁
統(tǒng)計思想英文版課件Cha課件_第3頁
統(tǒng)計思想英文版課件Cha課件_第4頁
統(tǒng)計思想英文版課件Cha課件_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

StatisticalThoughtEnglishEditionCoursewareIntroductionDescriptivestatisticsFundamentalsofProbabilityTheoryInferentialstatisticsBayesianstatisticsTimeseriesanalysisNonparametricstatisticsIntroduction01Learningmethods:Thecourseoptionsacombinationoftheoreticalknowledgeandpracticalexercises,allowinglearnerstogainadeepunderstandingofstatisticalthinkinganditsapplicationsthroughhands-onexperienceCoursecontent:Thiscourseprovidesanintroductiontostatisticalthinking,includingbasicstatisticalconcepts,methods,andapplicationsItcoversawiderangeoftopics,suchasdescriptivestatistics,probabilitytheory,inferentialstatistics,andstatisticalmodelingLearningobjectives:Thecourseaimstocultivatestudents'statisticalthinkingability,improvetheirdataanalysisandproblem-solvingskills,andenablethemtoapplystatisticalmethodstorealworldproblemseffectivelyCourseIntroductionTheimportanceofstatisticalthinkingProblemsolvingskills:Statisticalthinkingisanessentialskillforproblemsolvinginthemodernworld,asithelpsindividualsanalyzecomplexdata,identifypatternsandtrends,andmakeinformeddecisionsbasedonevidenceDatadrivendecisionmaking:Withtheincreasingavailabilityofdatainvariousfields,theabilitytousestatisticalthinkingtointerpretandanalyzedatahasbecomecrucialforeffectivedecisionmakingStatisticalthinkinghelpsindividualsmakedatadrivendecisionsthatareevidencebasedandrelatedScientificresearch:Statisticalthinkingisessentialinthefieldofscientificresearch,whereitisusedtodesignexperiments,collectandanalyzedata,anddrawconclusionsbasedonevidenceItplaysacriticalroleinthedevelopmentofnewknowledgeandtheoriesindifferentfields,includingthenaturalsciences,socialsciences,andhumanitiesDescriptivestatistics02

CollectionandorganizationofdataCollectdataGatherinformationthroughsurveys,experiences,ordatabasesEnsureaccuracyUsereliableandvalidmethodstocollectdatatominimizeerrorsandbiasesOrganizedataArrangeandstructurethecollecteddatainameaningfulwayforanalysisCalculatemeasuresofcentraltensionCalculatemean,media,andmodetodescribethecenterofthedatadistributionDeterminemeasuresofspreadCalculaterange,variance,andstandarddeviationtodescribethedispersionofthedataIdentifyoutliersIdentifyandhandledatapointsthataresignificantlydifferentfromtherestofthedataMethodofdescribingdataUsehistoriestovisualizethefrequencydistributionofdataCreatehistoriesBarchartsareusefulforcomparingcategoricalvariablesMakebarchartsScatterplotsareusedtovisualizetherelationshipbetweentwocontinuousvariablesDrawscatterplotsBoxplotsprovideavisualsummaryofnumericaldata,showingtherange,quarters,andmediaProduceboxplotsVisualizationofdataFundamentalsofProbabilityTheory03ThebasicconceptofprobabilityThebasicconceptofprobabilitydefinesthelifestyleofaneventhappeningSummaryProbabilityisameasureofthelikelihoodofaneventoccurring,expressedasanumberbetween0and1Aprobabilityof0meanstheeventcannothappen,whileaprobabilityof1meanstheeventwillhappenProbabilitytheoryisthefoundationforstatisticalinferenceanddecisionmakingDetailsRandomvariablesarequantitiesthatcantakedifferentvalues,andtheirdistributionsdescribethelifestyleofeachvalueSummaryRandomvariablescanbediscrete,takingafixedsetofvalues,orcontinuous,takinganyvaluewithinarangeDistributionsdescribethelikelihoodofeachvalue,suchasthebinarydistributionfordistinctvariablesorthenormaldistributionforcontinuousvariablesDetailsRandomvariablesandtheirdistributionsSummaryParameterestimationistheprocessofinferringunknownparametersofadistribution,whilehypothesistestingisusedtoevaluatewhereagivenhypothesisistrueorfalse要點一要點二DetailsParameterestimationtechniquesincludemaximumlikelihoodestimationandBayesianestimationHypothesistestingusesstatisticalteststodeterminewhichgivenhypothesisissupportedbythedataornotCommonlyusedhypothesistestsincludethet-test,chisquaretest,andANOVAtestParameterestimationandhypothesistestingInferentialstatistics04ItisastatisticalmethodthatexaminestherelationshipbetweenonedependentvariableandoneormoreindependentvariablesIthelpsinpredictingthedependentvariablesbasedontheindependentvariablesItextendsthelinearregressionbyincludingmultipleindependentvariablestopredictthedependentvariablesIthelpsinunderstandingtherelativeimportanceofdifferentindependentvariablesinpredictingthedependentvariablesItisusedtopredictbinaryoutcomesbymodelingtheprobabilityoftheeventoccurringusingalogisticfunctionItiscommonlyusedinareaslikemarketing,finance,andmedicalresearchLinearregressionMultipleregressionLogisticregressionRegressionanalysisANOVA(AnalysisofVariance)ItisastatisticaltechniqueusedtocomparethemeansoftwoormoregroupsIttestswhicharesignificantlydifferentfromeachother,indicatingapossibleeffectofatreatmentorotherfactoronthegroupsANCOVA(AnalysisofCovariance)ItisanextensionofANOVAthatallowsfortheinclusionofadditionalvariablesthatmayaffectthedependentvariables,beyondthegroupsIthelpsincontrollingforconsolidatingvariablesandprovidingamoreaccurateestimateoftheeffectofthetreatmentVarianceanalysisDecisionTreeandRandomForestDecisionTree:ItisagraphicalrepresentationofadecisionmakingprocessthatleadstoaconclusionItiscommonlyusedinmachinelearningalgorithmstoclassifyorpredictoutputsbasedoninputfeaturesAdecisiontreeconsistencyofnodesandbranchesthatrepresentsdifferentdecisionsandoutcomesRandomForest:ItisanensemblelearningmethodthatcombinesthepredictionsofmultipledecisiontreestoimproveaccuracyandreduceoverfittingEachtreeintherandomforestisbuiltonasubsetofthedataandusesarandomsubsetoffeaturesateachnodeformakingdecisionsThefinalpredictionismadebyaggregatingthepredictionsofallthetreesintheforestRandomforestsareknownfortheiraccuracy,robustness,andabilitytohandlelargedatasetseffectivelyBayesianstatistics05TheBayesiantheoryisafundamentaltheoryinBayesianstatistics,whichprovidesamathematicalexpressionfortheconditionalprobabilityofeventsItisakeytoolinupdatingbeliefsinthelightofnewevidenceBayesiantheoryTheBayesiantheoryhasbeenwidelyusedinvariousfieldsofscientificresearch,suchasmedicaldiagnosis,signalprocessing,andnaturallanguageprocessingItallowsresearcherstoincorporatepriorknowledgeintotheiranalysisandmakemoreaccurateconsultationsApplicationsinScientificResearchBayesiantheoryanditsapplicationsDefinitionABayesiannetworkisaprobabilisticgraphicalmodelthatreportsthejointprobabilitydistributionofasetofrandomvariablesItusesadirectedacidicgraphtoreportconditionalindependencerelationshipsamongvariablesApplicationsindecisionmakingBayesiannetworkshavebeenusedinvariousdecisionmakingproblems,suchasmedicaldiagnosis,financialriskassessment,andmilitarydecisionmakingTheyprovideastructuredwaytoreportuncertaintyandmakedecisionsunderuncertaintyBayesiannetworkIntroductionBayesiandecisionanalysisisaframeworkformakingdecisionsunderuncertaintyusingBayesianprobabilitytheoryItintegratestheprinciplesofdecisiontheorywithBayesianstatisticstoprovideasystematicapproachfordecisionmakingApplicationsinrealworldproblemsBayesiandecisionanalysishasbeenappliedtosolverealworldproblems,suchasmedicaltreatmentdecisions,inventorymanagement,andfinancialportfoliomanagementItallowsdecisionmakerstotakeintoaccountboththeuncertaintyofoutcomesandthevalueofinformationintheirdecisionsBayesiandecisionanalysisTimeseriesanalysis06010203DefinitionThestationarityofatimeseriesreferstoitsstatisticalcharacteristicsthatdonotchangeovertime.TestingmethodThestationarityofthetimeseriesistestedbyobservingthemean,variance,andautocorrelationplotofthetimeseries,aswellasconductingstatisticaltestssuchasADFandPPtests.ImportanceStationarityisaprerequisitefortimeseriesanalysis,asmanytimeseriesanalysismethodsassumethatthedataisstationary.TestingthestationoftimeseriesDefinitionARIMAmodelisastatisticalmodelusedforanalyzingandpredictingtimeseriesdata,whichincludesthreeparts:autoregressive(AR),difference(I),andmovingaverage(MA).ModelingstepsFirst,performdifferentialanalysisonthedatatoeliminatenonstationarity,thenidentifyandestimatetheparametersofthemodel,andfinallymakepredictions.ApplicationscenarioWidelyusedintimeseriesforecastinginfieldssuchasfinance,economy,andmeteorology.ARIMAmodel要點三DefinitionSeasonaltimeseriesreferstoatimeserieswithperiodicchanges,suchasmonthly,quarterly,orannualdata.要點一要點二AnalysismethodAnalyzeseasonaltimeseriesbyobservingtheseasonalchartandseasonalindexofthetimeseries,andusingmodelssuchasseasonalautoregressiveintegralmovingaverage(SARIMA).ApplicationscenarioSuitablefordatawithobviousseasonalcharacteristics,suchassalesdata,climatedata,etc.要點三SeasonaltimeseriesanalysisNonparametricstatistics07Kerneldensityestimationisanonparametricstatisticalmethodusedtoestimateunknownpr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論