版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
StatisticalThoughtEnglishEditionCoursewareIntroductionDescriptivestatisticsFundamentalsofProbabilityTheoryInferentialstatisticsBayesianstatisticsTimeseriesanalysisNonparametricstatisticsIntroduction01Learningmethods:Thecourseoptionsacombinationoftheoreticalknowledgeandpracticalexercises,allowinglearnerstogainadeepunderstandingofstatisticalthinkinganditsapplicationsthroughhands-onexperienceCoursecontent:Thiscourseprovidesanintroductiontostatisticalthinking,includingbasicstatisticalconcepts,methods,andapplicationsItcoversawiderangeoftopics,suchasdescriptivestatistics,probabilitytheory,inferentialstatistics,andstatisticalmodelingLearningobjectives:Thecourseaimstocultivatestudents'statisticalthinkingability,improvetheirdataanalysisandproblem-solvingskills,andenablethemtoapplystatisticalmethodstorealworldproblemseffectivelyCourseIntroductionTheimportanceofstatisticalthinkingProblemsolvingskills:Statisticalthinkingisanessentialskillforproblemsolvinginthemodernworld,asithelpsindividualsanalyzecomplexdata,identifypatternsandtrends,andmakeinformeddecisionsbasedonevidenceDatadrivendecisionmaking:Withtheincreasingavailabilityofdatainvariousfields,theabilitytousestatisticalthinkingtointerpretandanalyzedatahasbecomecrucialforeffectivedecisionmakingStatisticalthinkinghelpsindividualsmakedatadrivendecisionsthatareevidencebasedandrelatedScientificresearch:Statisticalthinkingisessentialinthefieldofscientificresearch,whereitisusedtodesignexperiments,collectandanalyzedata,anddrawconclusionsbasedonevidenceItplaysacriticalroleinthedevelopmentofnewknowledgeandtheoriesindifferentfields,includingthenaturalsciences,socialsciences,andhumanitiesDescriptivestatistics02
CollectionandorganizationofdataCollectdataGatherinformationthroughsurveys,experiences,ordatabasesEnsureaccuracyUsereliableandvalidmethodstocollectdatatominimizeerrorsandbiasesOrganizedataArrangeandstructurethecollecteddatainameaningfulwayforanalysisCalculatemeasuresofcentraltensionCalculatemean,media,andmodetodescribethecenterofthedatadistributionDeterminemeasuresofspreadCalculaterange,variance,andstandarddeviationtodescribethedispersionofthedataIdentifyoutliersIdentifyandhandledatapointsthataresignificantlydifferentfromtherestofthedataMethodofdescribingdataUsehistoriestovisualizethefrequencydistributionofdataCreatehistoriesBarchartsareusefulforcomparingcategoricalvariablesMakebarchartsScatterplotsareusedtovisualizetherelationshipbetweentwocontinuousvariablesDrawscatterplotsBoxplotsprovideavisualsummaryofnumericaldata,showingtherange,quarters,andmediaProduceboxplotsVisualizationofdataFundamentalsofProbabilityTheory03ThebasicconceptofprobabilityThebasicconceptofprobabilitydefinesthelifestyleofaneventhappeningSummaryProbabilityisameasureofthelikelihoodofaneventoccurring,expressedasanumberbetween0and1Aprobabilityof0meanstheeventcannothappen,whileaprobabilityof1meanstheeventwillhappenProbabilitytheoryisthefoundationforstatisticalinferenceanddecisionmakingDetailsRandomvariablesarequantitiesthatcantakedifferentvalues,andtheirdistributionsdescribethelifestyleofeachvalueSummaryRandomvariablescanbediscrete,takingafixedsetofvalues,orcontinuous,takinganyvaluewithinarangeDistributionsdescribethelikelihoodofeachvalue,suchasthebinarydistributionfordistinctvariablesorthenormaldistributionforcontinuousvariablesDetailsRandomvariablesandtheirdistributionsSummaryParameterestimationistheprocessofinferringunknownparametersofadistribution,whilehypothesistestingisusedtoevaluatewhereagivenhypothesisistrueorfalse要點一要點二DetailsParameterestimationtechniquesincludemaximumlikelihoodestimationandBayesianestimationHypothesistestingusesstatisticalteststodeterminewhichgivenhypothesisissupportedbythedataornotCommonlyusedhypothesistestsincludethet-test,chisquaretest,andANOVAtestParameterestimationandhypothesistestingInferentialstatistics04ItisastatisticalmethodthatexaminestherelationshipbetweenonedependentvariableandoneormoreindependentvariablesIthelpsinpredictingthedependentvariablesbasedontheindependentvariablesItextendsthelinearregressionbyincludingmultipleindependentvariablestopredictthedependentvariablesIthelpsinunderstandingtherelativeimportanceofdifferentindependentvariablesinpredictingthedependentvariablesItisusedtopredictbinaryoutcomesbymodelingtheprobabilityoftheeventoccurringusingalogisticfunctionItiscommonlyusedinareaslikemarketing,finance,andmedicalresearchLinearregressionMultipleregressionLogisticregressionRegressionanalysisANOVA(AnalysisofVariance)ItisastatisticaltechniqueusedtocomparethemeansoftwoormoregroupsIttestswhicharesignificantlydifferentfromeachother,indicatingapossibleeffectofatreatmentorotherfactoronthegroupsANCOVA(AnalysisofCovariance)ItisanextensionofANOVAthatallowsfortheinclusionofadditionalvariablesthatmayaffectthedependentvariables,beyondthegroupsIthelpsincontrollingforconsolidatingvariablesandprovidingamoreaccurateestimateoftheeffectofthetreatmentVarianceanalysisDecisionTreeandRandomForestDecisionTree:ItisagraphicalrepresentationofadecisionmakingprocessthatleadstoaconclusionItiscommonlyusedinmachinelearningalgorithmstoclassifyorpredictoutputsbasedoninputfeaturesAdecisiontreeconsistencyofnodesandbranchesthatrepresentsdifferentdecisionsandoutcomesRandomForest:ItisanensemblelearningmethodthatcombinesthepredictionsofmultipledecisiontreestoimproveaccuracyandreduceoverfittingEachtreeintherandomforestisbuiltonasubsetofthedataandusesarandomsubsetoffeaturesateachnodeformakingdecisionsThefinalpredictionismadebyaggregatingthepredictionsofallthetreesintheforestRandomforestsareknownfortheiraccuracy,robustness,andabilitytohandlelargedatasetseffectivelyBayesianstatistics05TheBayesiantheoryisafundamentaltheoryinBayesianstatistics,whichprovidesamathematicalexpressionfortheconditionalprobabilityofeventsItisakeytoolinupdatingbeliefsinthelightofnewevidenceBayesiantheoryTheBayesiantheoryhasbeenwidelyusedinvariousfieldsofscientificresearch,suchasmedicaldiagnosis,signalprocessing,andnaturallanguageprocessingItallowsresearcherstoincorporatepriorknowledgeintotheiranalysisandmakemoreaccurateconsultationsApplicationsinScientificResearchBayesiantheoryanditsapplicationsDefinitionABayesiannetworkisaprobabilisticgraphicalmodelthatreportsthejointprobabilitydistributionofasetofrandomvariablesItusesadirectedacidicgraphtoreportconditionalindependencerelationshipsamongvariablesApplicationsindecisionmakingBayesiannetworkshavebeenusedinvariousdecisionmakingproblems,suchasmedicaldiagnosis,financialriskassessment,andmilitarydecisionmakingTheyprovideastructuredwaytoreportuncertaintyandmakedecisionsunderuncertaintyBayesiannetworkIntroductionBayesiandecisionanalysisisaframeworkformakingdecisionsunderuncertaintyusingBayesianprobabilitytheoryItintegratestheprinciplesofdecisiontheorywithBayesianstatisticstoprovideasystematicapproachfordecisionmakingApplicationsinrealworldproblemsBayesiandecisionanalysishasbeenappliedtosolverealworldproblems,suchasmedicaltreatmentdecisions,inventorymanagement,andfinancialportfoliomanagementItallowsdecisionmakerstotakeintoaccountboththeuncertaintyofoutcomesandthevalueofinformationintheirdecisionsBayesiandecisionanalysisTimeseriesanalysis06010203DefinitionThestationarityofatimeseriesreferstoitsstatisticalcharacteristicsthatdonotchangeovertime.TestingmethodThestationarityofthetimeseriesistestedbyobservingthemean,variance,andautocorrelationplotofthetimeseries,aswellasconductingstatisticaltestssuchasADFandPPtests.ImportanceStationarityisaprerequisitefortimeseriesanalysis,asmanytimeseriesanalysismethodsassumethatthedataisstationary.TestingthestationoftimeseriesDefinitionARIMAmodelisastatisticalmodelusedforanalyzingandpredictingtimeseriesdata,whichincludesthreeparts:autoregressive(AR),difference(I),andmovingaverage(MA).ModelingstepsFirst,performdifferentialanalysisonthedatatoeliminatenonstationarity,thenidentifyandestimatetheparametersofthemodel,andfinallymakepredictions.ApplicationscenarioWidelyusedintimeseriesforecastinginfieldssuchasfinance,economy,andmeteorology.ARIMAmodel要點三DefinitionSeasonaltimeseriesreferstoatimeserieswithperiodicchanges,suchasmonthly,quarterly,orannualdata.要點一要點二AnalysismethodAnalyzeseasonaltimeseriesbyobservingtheseasonalchartandseasonalindexofthetimeseries,andusingmodelssuchasseasonalautoregressiveintegralmovingaverage(SARIMA).ApplicationscenarioSuitablefordatawithobviousseasonalcharacteristics,suchassalesdata,climatedata,etc.要點三SeasonaltimeseriesanalysisNonparametricstatistics07Kerneldensityestimationisanonparametricstatisticalmethodusedtoestimateunknownpr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年湘教新版九年級地理上冊階段測試試卷
- 2025年魯教新版高二化學(xué)下冊階段測試試卷
- 2025年粵教版七年級英語下冊月考試卷
- 融合創(chuàng)新培養(yǎng)物流人才的策略與實施路徑
- 2024版架子工工程承包合同范本
- 2024年滬科版選修3化學(xué)下冊階段測試試卷含答案
- 2024年華師大新版九年級化學(xué)上冊階段測試試卷
- 2024年軟件開發(fā)服務(wù)外包合同
- 2025年統(tǒng)編版2024九年級數(shù)學(xué)下冊階段測試試卷
- 二零二五年度安全防范設(shè)備采購合同范本3篇
- 2024年有限合伙股權(quán)代持
- 廣東珠海市駕車沖撞行人案件安全防范專題培訓(xùn)
- 花城版一年級上冊音樂 第3課 《國旗國旗真美麗》(教案)
- 《輸液港的護理》課件
- 2024年四川高校對口招生考試中職英語試卷真題(含答案)
- 食品質(zhì)量安全法律法規(guī)培訓(xùn)
- 醫(yī)療儀器安裝與調(diào)試方案
- 精彩的儲運部年終總結(jié)
- 陜西省陜西師大附中2025屆高一物理第一學(xué)期期末統(tǒng)考模擬試題含解析
- 人教版2024年小學(xué)二年級上學(xué)期語文期末考試往年真題
- 2024年保安員證考試題庫及答案(共130題)
評論
0/150
提交評論