版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
22.3三角形的中位線
知識回顧1三角形的性質(zhì)中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半.∵DE是△ABC的中位線,∴DE∥BC,DEBCA中點四邊形定義:
順次連接四邊形各邊中點所得的四邊形叫做中點四邊形。思考順次連接平行四邊形各邊中點所得的四邊形是平行四邊形嗎?矩形呢?觀察并思考ABCDEFGH
1、
已知:如圖,點E、F、G、H分別是四邊形ABCD各邊中點。
想一想,依次連接多邊形中點是什么圖形?2、探究對角線相等的四邊形的中點四邊形
3、對角線互相垂直的四邊形的中點四邊形4、對角線想等且互相垂直的四邊形的中的四邊形任意四邊形的中點四邊形都是________;平行四邊形的中點四邊形是__________;矩形的中點四邊形是________________;菱形的中點四邊形是________________;正方形的中點四邊形是______________;小組合作探究:平行四邊形平行四邊形菱形矩形正方形結(jié)合剛才的證明過程,小組討論并思考:(1)中點四邊形的形狀與原四邊形的什么有著密切的關(guān)系?(2)要使中點四邊形是菱形,原四邊形一定要是矩形嗎?(3)要使中點四邊形是矩形,原四邊形一定要是菱形嗎?想一想說一說結(jié)論:(1)中點四邊形的形狀與原四邊形的
有密切關(guān)系;(2)只要原四邊形的兩條對角線
,就能使中點四邊形是菱形;(3)只要原四邊形的兩條對角線
,就能使中點四邊形是矩形;(4)要使中點四邊形是正方形,原四邊形要符合的條件是
。對角線相等互相垂直相等且互相垂直本節(jié)回顧1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融科技下知識產(chǎn)權(quán)融資的實踐與探索
- 個人住房抵押貸款合同
- 中外雙方進出口合同范本
- 二手房全款交易合同范本
- 個人租賃倉儲空間的合同范本
- 中外合作研發(fā)合同范本(人工智能)
- 專業(yè)技術(shù)人才培養(yǎng)合作合同
- 產(chǎn)業(yè)投資合作協(xié)議合同模板
- 主要農(nóng)作物新品種推廣合同示范文本
- 個人與合作方倉儲運輸合同例文
- 2024年山東省高中學業(yè)水平合格考生物試卷試題(含答案詳解)
- 2025年中考英語復習熱點話題作文范文
- 小學數(shù)學教學工作交流數(shù)學教學中的體會總結(jié)經(jīng)驗交流會課件
- 2024年美國智能馬桶和馬桶蓋市場現(xiàn)狀及上下游分析報告
- 中國成人暴發(fā)性心肌炎診斷和治療指南(2023版)解讀
- 復產(chǎn)復工六個一
- 招商引資項目落地工作方案
- 湘教版高中數(shù)學必修二知識點清單
- 商業(yè)綜合體投資計劃書
- 2024妊娠期糖尿病指南課件
- 《鋼鐵是怎樣煉成的》練習題(含答案)
評論
0/150
提交評論