2024學(xué)生版大二輪數(shù)學(xué)新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題一 第5講 母題突破1 導(dǎo)數(shù)與不等式的證明15_第1頁(yè)
2024學(xué)生版大二輪數(shù)學(xué)新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題一 第5講 母題突破1 導(dǎo)數(shù)與不等式的證明15_第2頁(yè)
2024學(xué)生版大二輪數(shù)學(xué)新高考提高版(京津瓊魯遼粵冀鄂湘渝閩蘇浙黑吉晉皖云豫新甘貴贛桂)專題一 第5講 母題突破1 導(dǎo)數(shù)與不等式的證明15_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第5講導(dǎo)數(shù)的綜合應(yīng)用[考情分析]1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值(最值)是高考的常見題型,而導(dǎo)數(shù)與函數(shù)、不等式、方程、數(shù)列等的交匯命題是高考的熱點(diǎn)和難點(diǎn).2.多以解答題的形式壓軸出現(xiàn),難度較大.母題突破1導(dǎo)數(shù)與不等式的證明母題(2023·十堰調(diào)研)已知函數(shù)f(x)=(2-x)ex-ax-2.(1)若f(x)在R上是減函數(shù),求a的取值范圍;(2)當(dāng)0≤a<1時(shí),求證:f(x)在(0,+∞)上只有一個(gè)零點(diǎn)x0,且x0<eq\f(e,a+1).思路分析?f′x≤0恒成立?f′xmax≤0求解?0<x0<2?x0<\f(e,a+1),ax0+x0<e?ax0+x0<2-x0?2-x0≤e________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1](2023·哈師大附中模擬)已知函數(shù)f(x)=ex+exlnx(其中e是自然對(duì)數(shù)的底數(shù)).求證:f(x)≥ex2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2]已知函數(shù)f(x)=lnx,g(x)=ex.證明:f(x)+eq\f(2,ex)>g(-x).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法利用導(dǎo)數(shù)證明不等式問(wèn)題的方法(1)直接構(gòu)造函數(shù)法:證明不等式f(x)>g(x)(或f(x)<g(x))轉(zhuǎn)化為證明f(x)-g(x)>0(或f(x)-g(x)<0),進(jìn)而構(gòu)造輔助函數(shù)h(x)=f(x)-g(x).(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論.(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同結(jié)構(gòu)變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).1.(2023·桂林模擬)已知函數(shù)f(x)=x2-cosx,求證:f(x)+2-eq\f(x,ex-1)>0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·南昌模擬)已知函數(shù)f(x)=a(x2-1)-lnx(x>0).若0<a<eq\f(1,2),設(shè)函數(shù)f(x)的較大的一個(gè)零點(diǎn)記為x0,求證:f′(x0)<1-2a._____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論