版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濰坊市濰城區(qū)望留鎮(zhèn)莊頭中學(xué)2024屆八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.在下列關(guān)于的方程中,是二項方程的是()A. B. C. D.2.若等腰的周長是,一腰長為,底邊長為,則與的函數(shù)關(guān)系式及自變量的取值范圍是A. B.C. D.3.下列二次根式是最簡二次根式的是()A. B. C. D.4.如圖,一個長方體鐵塊放置在圓柱形水槽容器內(nèi),向容器內(nèi)按一定的速度均勻注水,60秒后將容器內(nèi)注滿.容器內(nèi)水面的高度h(cm)與注水時間t(s)之間的函數(shù)關(guān)系圖象大致是()A. B. C. D.5.在△ABC中,AB=15,AC=13,BC上的高AD長為12,則△ABC的面積為()A.84 B.24 C.24或84 D.42或846.下列二次根式是最簡二次根式的是(
)A. B. C. D.7.某市為了改善城市容貌,綠化環(huán)境,計劃過兩年時間,綠地面積增加44%,這兩年平均每年綠地面積的增長率是()A.19% B.20% C.21% D.22%8.下列長度的三條線段能組成直角三角形的是()A.,, B.,, C.,, D.,,9.下列各式成立的是()A. B.=3C. D.=310.如圖,在一個高為6米,長為10米的樓梯表面鋪地毯,則地毯長度至少是()A.6米 B.10米 C.14米 D.16米11.點(1,-6)關(guān)于原點對稱的點為()A.(-6,1) B.(-1,6) C.(6,-1) D.(-1,-6)12.某機(jī)械廠七月份生產(chǎn)零件50萬個,第三季度生產(chǎn)零件196萬個.設(shè)該廠八、九月份平均每月的增長率為x,那么x滿足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196二、填空題(每題4分,共24分)13.如圖,四邊形ABCD是菱形,點A,B,C,D的坐標(biāo)分別是(m,0),(0,n),(1,0),(0,2),則mn=_____.14.如圖,四邊形中,,,為上一點,分別以,為折痕將兩個角(,)向內(nèi)折起,點,恰好都落在邊的點處.若,,則________.15.直角三角形的兩直角邊是3和4,則斜邊是____________16.如圖,已知矩形的面積為,依次取矩形各邊中點、、、,順次連結(jié)各中點得到第個四邊形,再依次取四邊形各邊中點、、、,順次連結(jié)各中點得到第個四邊形,……,按照此方法繼續(xù)下去,則第個四邊形的面積為________.17.如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點O.點E是CD的中點,BD=10,則DOE的周長為_____.18.如圖,在平行四邊形ABCD中,DE平分∠ADC交邊BC于點E,AD=5,AB=3,則BE=________.三、解答題(共78分)19.(8分)為了貫徹落實市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.20.(8分)如圖,在正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF與DE相交于點M,且∠BAF=∠ADE.(1)如圖1,求證:AF⊥DE;(2)如圖2,AC與BD相交于點O,AC交DE于點G,BD交AF于點H,連接GH,試探究直線GH與AB的位置關(guān)系,并說明理由;(3)在(1)(2)的基礎(chǔ)上,若AF平分∠BAC,且BDE的面積為4+2,求正方形ABCD的面積.21.(8分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+b與x軸、y軸相交于A、B兩點,動點C(m,0)在線段OA上,將線段CB繞著點C順時針旋轉(zhuǎn)90°得到CD,此時點D恰好落在直線AB上,過點D作DE⊥x軸于點E.(1)求m和b的數(shù)量關(guān)系;(2)當(dāng)m=1時,如圖2,將△BCD沿x軸正方向平移得△B′C′D′,當(dāng)直線B′C′經(jīng)過點D時,求點B′的坐標(biāo)及△BCD平移的距離;(3)在(2)的條件下,直線AB上是否存在一點P,以P、C、D為頂點的三角形是等腰直角三角形?若存在,寫出滿足條件的P點坐標(biāo);若不存在,請說明理由.22.(10分)某商場購進(jìn)A、B兩種服裝共100件,已知購進(jìn)這100件服裝的費(fèi)用不得超過7500元,且其中A種服裝不少于65件,它們的進(jìn)價和售價如表.服裝進(jìn)價(元/件)售價(元/件)A80120B6090其中購進(jìn)A種服裝為x件,如果購進(jìn)的A、B兩種服裝全部銷售完,根據(jù)表中信息,解答下列問題.(1)求獲取總利潤y元與購進(jìn)A種服裝x件的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)該商場對A種服裝以每件優(yōu)惠a(0<a<20)元的售價進(jìn)行優(yōu)惠促銷活動,B種服裝售價不變,那么該商場應(yīng)如何調(diào)整A、B服裝的進(jìn)貨量,才能使總利潤y最大?23.(10分)如圖,一次函數(shù)y=x+1的圖象l與x軸、y軸分別交于A、B兩點(1)l上有一P點,它的縱坐標(biāo)為2,求點P的坐標(biāo);(2)求A、B兩點間的距離AB.24.(10分)某經(jīng)銷商從市場得知如下信息:A品牌手表B品牌手表進(jìn)價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進(jìn)這兩種品牌手表共100塊,設(shè)該經(jīng)銷商購進(jìn)A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.(1)試寫出y與x之間的函數(shù)關(guān)系式;(2)若要求全部銷售完后獲得的利潤不少于1.26萬元,該經(jīng)銷商有哪幾種進(jìn)貨方案;(3)選擇哪種進(jìn)貨方案,該經(jīng)銷商可獲利最大;最大利潤是多少元.25.(12分)在現(xiàn)今“互聯(lián)網(wǎng)+”的時代,密碼與我們的生活已經(jīng)緊密相連,密不可分.而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的6位數(shù)密碼就很有必要了.有一種用“因式分解法產(chǎn)生的密碼,方便記憶,其原理是:將一個多項式分解因式,如多項式:x3+2x2﹣x﹣2因式分解的結(jié)果為(x﹣1)(x+1)(x+2),當(dāng)x=18時,x﹣1=17,x+1=19,x+2=20,此時可以得到數(shù)字密碼1.(1)根據(jù)上述方法,當(dāng)x=21,y=7時,對于多項式x3﹣xy2分解因式后可以形成哪些數(shù)字密碼?(寫出兩個)(2)若多項式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本題的方法,當(dāng)x=27時可以得到其中一個密碼為242834,求m、n的值.26.如圖,邊長為5的正方形OABC的頂點O在坐標(biāo)原點處,點A,C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AG交于點P.(1)求證:CE=EP.(2)若點E的坐標(biāo)為(3,0),在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【解題分析】
二項方程的左邊只有兩項,其中一項含未知數(shù)x,這項的次數(shù)就是方程的次數(shù);另一項是常數(shù)項;方程的右邊是0,結(jié)合選項進(jìn)行判斷即可.【題目詳解】解:A、x3=x即x3-x=0不是二項方程;B、x3=0不是二項方程;C、x4-x2=1,即x4-x2-1=0,不是二項方程;D、81x4-16=0是二項方程;故選:D.【題目點撥】本題考查了高次方程,掌握方程的項數(shù)是解題關(guān)鍵.2、C【解題分析】
根據(jù)題意,等腰三角形的兩腰長相等,即可列出關(guān)系式.【題目詳解】依題意,,根據(jù)三角形的三邊關(guān)系得,,得,,得,得,,故與的函數(shù)關(guān)系式及自變量的取值范圍是:,故選.【題目點撥】本題考查了一次函數(shù)的應(yīng)用,涉及了等腰三角形的性質(zhì),三角形的三邊關(guān)系,做此類題型要注意利用三角形的三邊關(guān)系要確定邊長的取值范圍.3、B【解題分析】
根據(jù)最簡二次根式的概念即可求出答案.【題目詳解】(A)原式=2,故A不是最簡二次根式;(C)原式=2,故B不是最簡二次根式;(D)原式=,故D不是最簡二次根式;故選:B.【題目點撥】此題考查最簡二次根式,解題關(guān)鍵在于掌握運(yùn)算法則4、D【解題分析】
根據(jù)圖像分析不同時間段的水面上升速度,進(jìn)而可得出答案.【題目詳解】已知一個長方體鐵塊放置在圓柱形水槽容器內(nèi),向容器內(nèi)按一定的速度均勻注水,60秒后將容器內(nèi)注滿.因為長方體是均勻的,所以初期的圖像應(yīng)是直線,當(dāng)水越過長方體后,注水需填充的體積變大,因此此時的圖像也是直線,但斜率小于初期,綜上所述答案選D.【題目點撥】能夠根據(jù)條件分析不同時間段的圖像是什么形狀是解答本題的關(guān)鍵.5、C【解題分析】
由于高的位置不確定,所以應(yīng)分情況討論.【題目詳解】(1)△ABC為銳角三角形,高AD在三角形ABC的內(nèi)部,∴BD==9,CD==5,∴△ABC的面積為=84,(2)△ABC為鈍角三角形,高AD在三角形ABC的外部,∴BD==9,CD==5,∴△ABC的面積為=24,故選C.【題目點撥】此題主要考察勾股定理的應(yīng)用,解題的關(guān)鍵是根據(jù)三角形的形狀進(jìn)行分類討論.6、C【解題分析】【分析】最簡二次根式:①被開方數(shù)不含有分母(小數(shù));②被開方數(shù)中不含有可以開方開得出的因數(shù)或因式;【題目詳解】A.,被開方數(shù)含有分母,本選項不能選;B.,被開方數(shù)中含有可以開方開得出的因數(shù),本選項不能選;C.是最簡二次根式;D.,被開方數(shù)中含有可以開方開得出的因數(shù),本選項不能選.故選:C【題目點撥】本題考核知識點:最簡二次根式.解題關(guān)鍵點:理解最簡二次根式的條件.7、B【解題分析】試題分析:設(shè)這兩年平均每年綠地面積的增長率是x,則過一年時間的綠地面積為1+x,過兩年時間的綠地面積為(1+x)2,根據(jù)綠地面積增加44%即可列方程求解.設(shè)這兩年平均每年綠地面積的增長率是x,由題意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故選B.考點:一元二次方程的應(yīng)用點評:提升對實際問題的理解能力是數(shù)學(xué)學(xué)習(xí)的指導(dǎo)思想,因而此類問題是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.8、B【解題分析】
如果三角形兩條邊的平方和等于第三邊的平方,那么這個三角形就是直角三角形,最長邊所對的角為直角;【題目詳解】A.2+3≠4,故該三角形不是直角三角形;B.3+4=5,故該三角形是直角三角形;C.4+5≠6,故該三角形不是直角三角形;D.5+6≠7,故該三角形不是直角三角形.故選B【題目點撥】此題考查勾股定理逆定理,解題關(guān)鍵在于理解勾股定理逆定理的內(nèi)容.9、D【解題分析】分析:各項分別計算得到結(jié)果,即可做出判斷.詳解:A.原式=,不符合題意;B.原式不能合并,不符合題意;C.原式=,不符合題意;D.原式=|﹣3|=3,符合題意.故選D.點睛:本題考查了二次根式的加減法,以及二次根式的性質(zhì)與化簡,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.10、C【解題分析】
當(dāng)?shù)靥轰仢M樓梯時其長度的和應(yīng)該是樓梯的水平寬度與垂直高度的和,根據(jù)勾股定理求得水平寬度,然后求得地毯的長度即可.【題目詳解】解:由勾股定理得:樓梯的水平寬度=10∵地毯鋪滿樓梯是其長度的和應(yīng)該是樓梯的水平寬度與垂直高度的和,∴地毯的長度至少是8+6=14米.故選:C.【題目點撥】本題考查了勾股定理的應(yīng)用,與實際生活相聯(lián)系,加深了學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.11、B【解題分析】
根據(jù)平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù),可得答案.【題目詳解】解:點(1,-6)關(guān)于原點對稱的點的坐標(biāo)是(-1,6);故選:B.【題目點撥】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù).12、C【解題分析】
試題分析:一般增長后的量=增長前的量×(1+增長率),如果該廠八、九月份平均每月的增長率為x,那么可以用x分別表示八、九月份的產(chǎn)量:八、九月份的產(chǎn)量分別為50(1+x)、50(1+x)2,從而根據(jù)題意得出方程:50+50(1+x)+50(1+x)2=1.故選C.二、填空題(每題4分,共24分)13、1.【解題分析】分析:根據(jù)菱形的對角線互相垂直平分得出OA=OC,OB=OD,得出m和n的值,從而得出答案.詳解:∵四邊形ABCD是菱形,∴OA=OC,OB=OD,∴m=-1,n=-1,∴mn=1.點睛:本題主要考查的是菱形的性質(zhì),屬于基礎(chǔ)題型.根據(jù)菱形的性質(zhì)得出OA=OC,OB=OD是解題的關(guān)鍵.14、【解題分析】
先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=,所以EF=.【題目詳解】解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四邊形ABHD為矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,∴EF=DH=.故答案為:.【題目點撥】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了勾股定理.15、1【解題分析】
在直角三角形中,已知兩直角邊根據(jù)勾股定理可以計算斜邊.【題目詳解】在直角三角形中,三邊邊長符合勾股定理,已知兩直角邊為3、4,則斜邊邊長==1,故答案為1.【題目點撥】本題考查了直角三角形中的運(yùn)用,本題中正確的運(yùn)用勾股定理求斜邊的長是解題的關(guān)鍵.16、【解題分析】
根據(jù)矩形ABCD的面積、四邊形A1B1C1D1面積、四邊形A2B2C2D2的面積、四邊形A3B3C3D3的面積,即可發(fā)現(xiàn)中點四邊形的面積等于原四邊形的面積的一半,找到規(guī)律即可解題.【題目詳解】解:順次連接矩形ABCD四邊的中點得到四邊形A1B1C1D1,則四邊形A1B1C1D1的面積為矩形ABCD面積的,順次連接四邊形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,則四邊形A2B2C2D2的面積為四邊形A1B1C1D1面積的一半,即為矩形ABCD面積的,順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,則四邊形A3B3C3D3的面積為四邊形A2B2C2D2面積的一半,即為矩形ABCD面積的,故中點四邊形的面積等于原四邊形的面積的一半,則四邊形AnBnCnDn面積為矩形ABCD面積的,又∵矩形ABCD的面積為1,∴四邊形AnBnCnDn的面積=1×=,故答案為:.【題目點撥】本題考查了中點四邊形以及矩形的性質(zhì)的運(yùn)用,找到連接矩形、菱形中點所得的中點四邊形的面積為原四邊形面積的一半是解題的關(guān)鍵.17、1【解題分析】
由平行四邊形的性質(zhì)得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,證出OE是△BCD的中位線,DE=CD,由三角形中位線定理得出OE=BC,△DOE的周長=OD+OE+DE=OD+(BC+CD),即可得出結(jié)果.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四邊形ABCD的周長為36,∴BC+CD=18,∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案為:1.【題目點撥】本題考查平行四邊形的性質(zhì)、三角形中位線的性質(zhì),熟練運(yùn)用平行四邊形和三角形中位線的性質(zhì)定理是解題的關(guān)鍵.18、2【解題分析】
由平行四邊形的性質(zhì)可得AB=CD,AD=BC,AD∥BC,根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)可證得∠CDE=∠DEC,由此可得EC=DC,再由BE=BC-CE=AD-AB即可求得AE的長.【題目詳解】∵四邊形ABCD為平行四邊形∴AB=CD,AD=BC,AD∥BC,∴∠DEC=∠ADE,∵DE為∠ADC的平分線,∴∠CDE=∠ADE,∴∠CDE=∠DEC,即EC=DC,∴BE=BC-CE=AD-AB=5-3=2.故答案為:2.【題目點撥】本題考查了角平分線的性質(zhì)以及平行線的性質(zhì)、平行四邊形的性質(zhì)等知識,證得EC=DC是解題的關(guān)鍵.三、解答題(共78分)19、(1)大貨車用8輛,小貨車用7輛;(2)y=100x+1.(3)見解析.【解題分析】
(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運(yùn)輸152箱魚苗,列方程組求解;(2)設(shè)前往A村的大貨車為x輛,則前往B村的大貨車為(8-x)輛,前往A村的小貨車為(10-x)輛,前往B村的小貨車為[7-(10-x)]輛,根據(jù)表格所給運(yùn)費(fèi),求出y與x的函數(shù)關(guān)系式;(3)結(jié)合已知條件,求x的取值范圍,由(2)的函數(shù)關(guān)系式求使總運(yùn)費(fèi)最少的貨車調(diào)配方案.【題目詳解】(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:解得:.∴大貨車用8輛,小貨車用7輛.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x為整數(shù)).(3)由題意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且為整數(shù),∵y=100x+1,k=100>0,y隨x的增大而增大,∴當(dāng)x=5時,y最小,最小值為y=100×5+1=9900(元).答:使總運(yùn)費(fèi)最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運(yùn)費(fèi)為9900元.20、(1)見解析;(2)GHAB,見解析;(3)12+8【解題分析】
(1)根據(jù)正方形的性質(zhì)證明∠BAF+∠AED=90°即可解決問題.(2)證明△ADF≌△BAF(ASA),推出AE=BF,由AECD,推出=,由BFAD,推出=,由AE=BF,CD=AD,推出=可得結(jié)論.(3)如圖2﹣1中,在AD上取一點J,使得AJ=AE,連接EJ.設(shè)AE=AJ=a.利用三角形的面積公式構(gòu)建方程求出a即可解決問題.【題目詳解】(1)證明:如圖1中,∵四邊形ABCD是正方形,∴∠DAE=∠ABF=90°,∵∠ADE=∠BAF,∴∠ADE+∠AED=∠BAF+∠AED=90°,∴∠AME=90°,∴AF⊥DE.(2)解:如圖2中.結(jié)論:GHAB.理由:連接GH.∵AD=AB,∠DAE=∠ABF=90°,∠ADE=∠BAF,∴△ADE≌△BAF(ASA),∴AE=BF,∵AECD,∴=,∵BFAD,∴=,∵AE=BF,CD=AD,∴=,∴GHAB.(3)解:如圖2﹣1中,在AD上取一點J,使得AJ=AE,連接EJ.設(shè)AE=AJ=a.∵AF平分∠BAC,∠BAC=45°,∴∠BAF=∠ADE=22.5°,∵AE=AJ=a,∠EAJ=90°,∴∠AJE=45°,∵∠AJE=∠JED+∠JDE,∴∠JED=∠JDE=22.5°,∴EJ=DJ=a,∵AB=AD=a+a,AE=AJ,∴BE=DJ=a,∵S△BDE=4+2,∴×a×(a+a)=4+2,解得a2=4,∴a=2或﹣2(舍棄),∴AD=2+2,∴正方形ABCD的面積=12+8.【題目點撥】本題主要考查正方形的性質(zhì),全等三角形的判定及性質(zhì),平行線分線段成比例,掌握正方形的性質(zhì),全等三角形的判定及性質(zhì)和平行線分線段成比例是解題的關(guān)鍵.21、(1)b=3m;(2)個單位長度;(3)P(0,3)或(2,2)【解題分析】
(1)易證△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得點D坐標(biāo),代入解析式可求m和b的數(shù)量關(guān)系;
(2)首先求出點D的坐標(biāo),再求出直線B′C′的解析式,求出點C′的坐標(biāo)即可解決問題;
(3)分兩種情況討論,由等腰直角三角形的性質(zhì)可求點P坐標(biāo).【題目詳解】解:(1)直線y=﹣x+b中,x=0時,y=b,所以,B(0,b),又C(m,0),所以,OB=b,OC=m,在和中∴點(2)∵m=1,∴b=3,點C(1,0),點D(4,1)∴直線AB解析式為:設(shè)直線BC解析式為:y=ax+3,且過(1,0)∴0=a+3∴a=-3∴直線BC的解析式為y=-3x+3,設(shè)直線B′C′的解析式為y=-3x+c,把D(4,1)代入得到c=13,∴直線B′C′的解析式為y=-3x+13,當(dāng)y=3時,當(dāng)y=0時,∴△BCD平移的距離是個單位.
(3)當(dāng)∠PCD=90°,PC=CD時,點P與點B重合,
∴點P(0,3)
如圖,當(dāng)∠CPD=90°,PC=PD時,
∵BC=CD,∠BCD=90°,∠CPD=90°
∴BP=PD
∴點P是BD的中點,且點B(0,3),點D(4,1)
∴點P(2,2)
綜上所述,點P為(0,3)或(2,2)時,以P、C、D為頂點的三角形是等腰直角三角形.【題目點撥】本題考查一次函數(shù)綜合題、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、待定系數(shù)法等知識,解題的關(guān)鍵是靈活運(yùn)用待定系數(shù)法解決問題,學(xué)會用分類討論的思想思考問題,學(xué)會用平移性質(zhì)解決問題,屬于中考壓軸題.22、(1)y=10x+3000(65≤x≤75);(2)方案1:當(dāng)0<a<10時,購進(jìn)A種服裝75件,B種服裝25件;方案2:當(dāng)a=10時,按哪種方案進(jìn)貨都可以;方案3:當(dāng)10<a<20時,購進(jìn)A種服裝65件,B種服裝35件.【解題分析】
(1)根據(jù)題意可知購進(jìn)A種服裝為x件,則購進(jìn)B種服裝為(100-x),A、B兩種服裝每件的利潤分別為40元、30元,據(jù)此列出函數(shù)關(guān)系式,然后再根據(jù)A種服裝不少于65件且購進(jìn)這100件服裝的費(fèi)用不得超過7500元,求出x的取值范圍即可;(2)根據(jù)題意列出含有a的一次函數(shù)解析式,再根據(jù)一次函數(shù)的性質(zhì)求解即可.【題目詳解】解:(1)∵80x+60(100﹣x)≤7500,解得:x≤75,∴y=40x+30(100﹣x)=10x+3000(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案1:當(dāng)0<a<10時,10﹣a>0,y隨x的增大而增大,所以當(dāng)x=75時,y有最大值,則購進(jìn)A種服裝75件,B種服裝25件;方案2:當(dāng)a=10時,無論怎么購進(jìn),獲利相同,所以按哪種方案進(jìn)貨都可以;方案3:當(dāng)10<a<20時,10﹣a<0,y隨x的增大而減小,所以當(dāng)x=65時,y有最大值,則購進(jìn)A種服裝65件,B種服裝35件.【題目點撥】一次函數(shù)在實際生活中的應(yīng)用是本題的考點,根據(jù)題意列出一次函數(shù)解析式并熟練掌握其性質(zhì)是解題的關(guān)鍵.23、(1)(,1);(1)1.【解題分析】
(1)把y=1代入函數(shù)解析式,求出x即可;(1)求出A、B的坐標(biāo),再根據(jù)勾股定理求出即可.【題目詳解】(1)把y=1代入y=x+1得:1=x+1,解得:x=,所以點P的坐標(biāo)是(,1);(1)y=x+1,當(dāng)x=0時,y=1,當(dāng)y=0時,0=x+1,解得:x=-,即A(-,0),B(0,1),即OA=,OB=1,所以A、B兩點間的距離AB==1.【題目點撥】本題考查了一次函數(shù)的圖象和性質(zhì)、一次函數(shù)圖象上點的坐標(biāo)特征等知識點,能求出A、B的坐標(biāo)是解(1)的關(guān)鍵.24、(1)y=140x+6000;(2)三種,答案見解析;(3)選擇方案③進(jìn)貨時,經(jīng)銷商可獲利最大,最大利潤是13000元.【解題分析】
(1)根據(jù)利潤y=(A售價﹣A進(jìn)價)x+(B售價﹣B進(jìn)價)×(100﹣x)列式整理即可;(2)全部銷售后利潤不少于1.26萬元得到一元一次不等式組,求出滿足題意的x的正整數(shù)值即可;(3)利用y與x的函數(shù)關(guān)系式的增減性來選擇哪種方案獲利最大,并求此時的最大利潤即可.【題目詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數(shù)關(guān)系式為y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴經(jīng)銷商有以下三種進(jìn)貨方案:方案A品牌(塊)B品牌(塊)①4852②4951③5050(3)∵140>0,∴y隨x的增大而增大.∴x=50時y取得最大值.又∵140×50+6000=13000,∴選擇方案③進(jìn)貨時,經(jīng)銷商可獲利最大,最大利潤是13000元.【題目點撥】本題考查由實際問題列函數(shù)關(guān)系式;一元一次不等式的應(yīng)用;一次函數(shù)的應(yīng)用.25、(1)可以形成的數(shù)字密碼是:212814、211428;(2)m的值是56,n的值是2.【解題分析】
(1)先將多項式進(jìn)行因式分解,然后再根據(jù)數(shù)字密碼方法形成數(shù)字密碼即可;(2)設(shè)x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),當(dāng)x=27時可以得到其中一個密碼為242834
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州石化職業(yè)技術(shù)大學(xué)《中國智慧》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西科技職業(yè)學(xué)院《地理學(xué)科教學(xué)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 集寧師范學(xué)院《石油化工工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南現(xiàn)代物流職業(yè)技術(shù)學(xué)院《海外市場調(diào)研與數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南工程學(xué)院應(yīng)用技術(shù)學(xué)院《跨境電商概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 衡水健康科技職業(yè)學(xué)院《風(fēng)景園林建筑設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶幼兒師范高等專科學(xué)?!妒袌稣{(diào)查分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶健康職業(yè)學(xué)院《數(shù)字音視頻技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江農(nóng)業(yè)商貿(mào)職業(yè)學(xué)院《先進(jìn)陶瓷材料》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州食品工程職業(yè)學(xué)院《自然地理學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- (完整版)四年級口算題大全100道
- 急救藥品的序號及作用課件
- 中藥飲片培訓(xùn)課件
- 林區(qū)防火專用道路技術(shù)規(guī)范
- 2023社會責(zé)任報告培訓(xùn)講稿
- 2023核電廠常規(guī)島及輔助配套設(shè)施建設(shè)施工技術(shù)規(guī)范 第8部分 保溫及油漆
- 2025年蛇年春聯(lián)帶橫批-蛇年對聯(lián)大全新春對聯(lián)集錦
- 表B. 0 .11工程款支付報審表
- 警務(wù)航空無人機(jī)考試題庫及答案
- 新生兒窒息復(fù)蘇正壓通氣課件
- 法律顧問投標(biāo)書
評論
0/150
提交評論