版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024步步高考二輪數(shù)學(xué)新教材講義培優(yōu)點1切線放縮在高考壓軸題中,經(jīng)??疾榕c導(dǎo)數(shù)有關(guān)的不等式問題,這些問題可以用常規(guī)方法求解,也可以用切線不等式進(jìn)行放縮.導(dǎo)數(shù)切線放縮法是一種非常實用的數(shù)學(xué)方法,它可以幫助我們更好地理解函數(shù)的性質(zhì)和變化規(guī)律,更能使問題簡單化,利用切線不等式進(jìn)行求解,能起到事半功倍的效果.考點一單切線放縮常見的切線放縮:?x∈R都有ex≥x+1.當(dāng)x>-1時,ln(x+1)≤x.當(dāng)x>0時,x>sinx;當(dāng)x<0時,x<sinx.例1(2023·重慶模擬)已知函數(shù)f(x)=sinx-aln(x+1).(1)若a=1,證明:當(dāng)x∈[0,1]時,f(x)≥0;(2)若a=-1,證明:當(dāng)x∈[0,+∞)時,f(x)≤2ex-2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法該方法適用于凹函數(shù)與凸函數(shù)且它們的凹凸性相反的問題(拆成兩個函數(shù)),兩函數(shù)有斜率相同的切線,這是切線放縮的基礎(chǔ),引入一個中間量,分別證明兩個不等式成立,然后利用不等式的傳遞性即可,難點在合理拆分函數(shù),尋找它們斜率相等的切線隔板.跟蹤演練1(2023·柳州模擬)已知函數(shù)f(x)=lnx+eq\f(a,x)-2x.(1)當(dāng)a>0時,討論f(x)的單調(diào)性;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)證明:ex+eq\f(a-2x2-2x,x)>f(x).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考點二雙切線放縮例2(2023·福州模擬)已知函數(shù)f(x)=xlnx-x.若f(x)=b有兩個實數(shù)根x1,x2,且x1<x2.求證:be+e<x2-x1<2b+e+eq\f(1,e).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法含有兩個零點的f(x)的解析式(可能含有參數(shù)x1,x2),告知方程f(x)=b有兩個實根,要證明兩個實根之差小于(或大于)某個表達(dá)式.求解策略是畫出f(x)的圖象,并求出f(x)在兩個零點處(有時候不一定是零點處)的切線方程(有時候不是找切線,而是找過曲線上某兩點的直線),然后嚴(yán)格證明曲線f(x)在切線(或所找直線)的上方或下方,進(jìn)而對x1,x2作出放大或者縮小,從而實現(xiàn)證明.跟蹤演練2(2023·山東省實驗中學(xué)模擬)已知函數(shù)f(x)=(x+1)(ex-1),若函數(shù)g(x)=f(x)-m(m>0)有兩個零點x1,x2,且x1<x2,證明:x2-x1≤1+2m+eq\f(m,e-1).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________培優(yōu)點2隱零點問題導(dǎo)函數(shù)的零點在很多時候是無法直接求解出來的,我們稱之為“隱零點”,既能確定其存在,但又無法用顯性的代數(shù)進(jìn)行表達(dá).這類問題的解題思路是對函數(shù)的零點設(shè)而不求,通過整體代換和過渡,再結(jié)合題目條件解決問題.考點一不含參函數(shù)的隱零點問題例1(2023·咸陽模擬)已知f(x)=(x-1)2ex-eq\f(a,3)x3+ax(x>0)(a∈R).(1)討論函數(shù)f(x)的單調(diào)性;(2)當(dāng)a=0時,判定函數(shù)g(x)=f(x)+lnx-eq\f(1,2)x2零點的個數(shù),并說明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法已知不含參函數(shù)f(x),導(dǎo)函數(shù)方程f′(x)=0的根存在,卻無法求出,利用零點存在定理,判斷零點存在,設(shè)方程f′(x)=0的根為x0,則①有關(guān)系式f′(x0)=0成立,②注意確定x0的合適范圍.跟蹤演練1(2023·天津模擬)已知函數(shù)f(x)=lnx-ax+1,g(x)=x(ex-x).(1)若直線y=2x與函數(shù)f(x)的圖象相切,求實數(shù)a的值;(2)當(dāng)a=-1時,求證:f(x)≤g(x)+x2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考點二含參函數(shù)的隱零點問題例2(2023·包頭模擬)已知函數(shù)f(x)=aex-ln(x+1)-1.(1)當(dāng)a=e時,求曲線y=f(x)在點(0,f(0))處的切線與兩坐標(biāo)軸所圍成的三角形的面積;(2)證明:當(dāng)a>1時,f(x)沒有零點.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法已知含參函數(shù)f(x,a),其中a為參數(shù),導(dǎo)函數(shù)方程f′(x,a)=0的根存在,卻無法求出,設(shè)方程f′(x)=0的根為x0,則①有關(guān)系式f′(x0)=0成立,該關(guān)系式給出了x0,a的關(guān)系;②注意確定x0的合適范圍,往往和a的范圍有關(guān).跟蹤演練2(2023·石家莊模擬)已知函數(shù)f(x)=x-lnx-2.(1)討論函數(shù)f(x)的單調(diào)性;(2)若對任意的x∈(1,+∞),都有xlnx+x>k(x-1)成立,求整數(shù)k的最大值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________培優(yōu)點3同構(gòu)函數(shù)問題同構(gòu)函數(shù)問題,是近幾年高考的熱點問題,考查數(shù)學(xué)素養(yǎng)和創(chuàng)新思維.同構(gòu)函數(shù)問題是指在不等式、方程、函數(shù)中,通過等價變形形成相同形式,再構(gòu)造函數(shù),利用函數(shù)的性質(zhì)解決問題,常見的同構(gòu)有雙變量同構(gòu)和指對同構(gòu),一般都是壓軸題,難度較大.考點一雙變量同構(gòu)問題例1(1)(多選)已知0<x<y<π,且eysinx=exsiny,其中e為自然對數(shù)的底數(shù),則下列選項中一定成立的是()A.y<eq\f(π,4) B.x<eq\f(π,4)C.cosx+cosy>0 D.sinx>siny(2)(2023·大連模擬)若實數(shù)a,b滿足4a+log3a=8b+3log27b,則()A.a(chǎn)<eq\f(3b,2) B.a(chǎn)>eq\f(3b,2)C.a(chǎn)>b3 D.a(chǎn)<b3規(guī)律方法含有地位相等的兩個變量的不等式(方程),關(guān)鍵在于對不等式(方程)兩邊變形或先放縮再變形,使不等式(方程)兩邊具有結(jié)構(gòu)的一致性,再構(gòu)造函數(shù),利用函數(shù)的性質(zhì)解決問題.跟蹤演練1(1)若對于0<x1<x2<a,都有x2lnx1-x1lnx2≤x1-x2成立,則a的最大值為()A.eq\f(1,2) B.1C.e D.2e(2)(2023·德陽模擬)已知實數(shù)x,y滿足eylnx=y(tǒng)ex,y>1,則x,y的大小關(guān)系為()A.y≥x B.y<xC.y>x D.y≤x考點二指對同構(gòu)問題考向1指對同構(gòu)與恒成立問題例2已知函數(shù)f(x)=ex+(1-a)x-lnax(a>0).(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;(2)若對于任意的x>0,有f(x)≥0,求正數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考向2指對同構(gòu)與證明不等式例3已知函數(shù)f(x)=xlnx.(1)求f(x)的最小值;(2)當(dāng)x>2時,證明:eq\f(x,x-1)ex>ln(x-1).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法指對同構(gòu)的常用形式(1)積型:aea≤blnb,一般有三種同構(gòu)方式:①同左構(gòu)造形式:aea≤lnbelnb,構(gòu)造函數(shù)f(x)=xex;②同右構(gòu)造形式:ealnea≤blnb,構(gòu)造函數(shù)f(x)=xlnx;③取對構(gòu)造形式:a+lna≤lnb+lneq\b\lc\(\rc\)(\a\vs4\al\co1(lnb))(b>1),構(gòu)造函數(shù)f(x)=x+lnx.(2)商型:eq\f(ea,a)≤eq\f(b,lnb),一般有三種同構(gòu)方式:①同左構(gòu)造形式:eq\f(ea,a)≤eq\f(elnb,lnb),構(gòu)造函數(shù)f(x)=eq\f(ex,x);②同右構(gòu)造形式:eq\f(ea,lnea)≤eq\f(b,lnb),構(gòu)造函數(shù)f(x)=eq\f(x,lnx);③取對構(gòu)造形式:a-lna≤lnb-lneq\b\lc\(\rc\)(\a\vs4\al\co1(lnb))(b>1),構(gòu)造函數(shù)f(x)=x-lnx.(3)和、差型:ea±a>b±lnb,一般有兩種同構(gòu)方式:①同左構(gòu)造形式:ea±a>elnb±lnb,構(gòu)造函數(shù)f(x)=ex±x;②同右構(gòu)造形式:ea±lnea>b±lnb,構(gòu)造函數(shù)f(x)=x±lnx. 跟蹤演練2已知a>0,函數(shù)f(x)=xex-ax.(1)當(dāng)a=1時,求曲線y=f(x)在x=1處的切線方程;(2)若f(x)≥lnx-x+1恒成立,求實數(shù)a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________培優(yōu)點4極值點偏移問題極值點偏移是指函數(shù)在極值點左右的增減速度不一樣,導(dǎo)致函數(shù)圖象不具有對稱性,極值點偏移問題常常出現(xiàn)在高考數(shù)學(xué)的壓軸題中,這類題往往對思維要求較高,過程較為煩瑣,計算量較大,解決極值點偏移問題,有對稱化構(gòu)造函數(shù)法和比值代換法,二者各有千秋,獨具特色.考點一對稱化構(gòu)造函數(shù)例1(2023·唐山模擬)已知函數(shù)f(x)=xe2-x.(1)求f(x)的極值;(2)若a>1,b>1,a≠b,f(a)+f(b)=4,證明:a+b<4.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法對稱化構(gòu)造函數(shù)法構(gòu)造輔助函數(shù)(1)對結(jié)論x1+x2>2x0型,構(gòu)造函數(shù)F(x)=f(x)-f(2x0-x).(2)對結(jié)論x1x2>xeq\o\al(2,0)型,方法一是構(gòu)造函數(shù)F(x)=f(x)-f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x\o\al(2,0),x))),通過研究F(x)的單調(diào)性獲得不等式;方法二是兩邊取對數(shù),轉(zhuǎn)化成lnx1+lnx2>2lnx0,再把lnx1,lnx2看成兩變量即可.跟蹤演練1(2022·全國甲卷)已知函數(shù)f(x)=eq\f(ex,x)-lnx+x-a.(1)若f(x)≥0,求a的取值范圍;(2)證明:若f(x)有兩個零點x1,x2,則x1x2<1.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考點二比值代換例2(2023·滄州模擬)已知函數(shù)f(x)=lnx-ax-1(a∈R).若方程f(x)+2=0有兩個實根x1,x2,且x2>2x1,求證:x1xeq\o\al(2,2)>eq\f(32,e3).(參考數(shù)據(jù):ln2≈0.693,ln3≈1.099)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)律方法比值代換法是指通過代數(shù)變形將所證的雙變量不等式通過代換t=eq\f(x1,x2)化為單變量的函數(shù)不等式,利用函數(shù)單調(diào)性證明.跟蹤演練2(2023·淮北模擬)已知a是實數(shù),函數(shù)f(x)=alnx-x.(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個相異的零點x1,x2且x1>x2>0,求證:x1x2>e2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規(guī)范答題1函數(shù)與導(dǎo)數(shù)(12分)(2023·新高考全國Ⅰ)已知函數(shù)f(x)=a(ex+a)-x.(1)討論f(x)的單調(diào)性;[切入點:求導(dǎo),討論a的正負(fù)](2)證明:當(dāng)a>0時,f(x)>2lna+eq\f(3,2).[方法一關(guān)鍵點:作差法比較f(x)min與2lna+eq\f(3,2)的大小][方法二關(guān)鍵點:利用不等式ex≥x+1把函數(shù)f(x)中的指數(shù)換成一次函數(shù)](1)解因為f(x)=a(ex+a)-x,定義域為R,所以f′(x)=aex-1,(1分)eq\x(\a\vs4\al\co1(當(dāng)a≤0時,由于ex>0,則aex≤0,,故f′x=aex-1<0恒成立,))?所以f(x)是減函數(shù);(2分)當(dāng)a>0時,令f′(x)=aex-1=0,解得x=-lna,eq\x(\a\vs4\al\co1(當(dāng)x<-lna時,f′x<0,,則fx在-∞,-lna上單調(diào)遞減;,當(dāng)x>-lna時,f′x>0,,則fx在-lna,+∞上單調(diào)遞增.))?綜上,當(dāng)a≤0時,f(x)是減函數(shù);(4分)當(dāng)a>0時,f(x)在(-∞,-lna)上單調(diào)遞減,在(-lna,+∞)上單調(diào)遞增.(5分)(2)證明方法一由(1)得,當(dāng)a>0時,eq\x(fxmin=f-lna=ae-lna+a+lna=1+a2+lna,)?(7分)要證f(x)>2lna+eq\f(3,2),即證1+a2+lna>2lna+eq\f(3,2),即證a2-eq\f(1,2)-lna>0恒成立,(8分)eq\x(令g(a)=a2-\f(1,2)-lna(a>0),)?(9分)則g′(a)=2a-eq\f(1,a)=eq\f(2a2-1,a),令g′(a)<0,則0<a<eq\f(\r(2),2);令g′(a)>0,則a>eq\f(\r(2),2),所以g(a)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))上單調(diào)遞減,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),+∞))上單調(diào)遞增,(11分)所以g(a)min=geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-eq\f(1,2)-ln
eq\f(\r(2),2)=lneq\r(2)>0,?則g(a)>0恒成立,所以當(dāng)a>0時,f(x)>2lna+eq\f(3,2)恒成立,證畢.(12分)方法二eq\x(令hx=ex-x-1,)?則h′(x)=ex-1,由于y=ex是增函數(shù),所以h′(x)=ex-1是增函數(shù),又h′(0)=e0-1=0,所以當(dāng)x<0時,h′(x)<0;當(dāng)x>0時,h′(x)>0,所以h(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,故h(x)≥h(0)=0,則ex≥x+1,當(dāng)且僅當(dāng)x=0時,等號成立,(6分)eq\x(\a\vs4\al\co1(因為fx=aex+a-x=aex+a2-x,=ex+lna+a2-x≥x+lna+1+a2-x,))?當(dāng)且僅當(dāng)x+lna=0,即x=-lna時,等號成立,所以要證f(x)>2lna+eq\f(3,2),即證x+lna+1+a2-x>2lna+eq\f(3,2),即證a2-eq\f(1,2)-lna>0,(8分)eq\x(\a\vs4\al\co1(令g(a)=a2-\f(1,2)-lna(a>0),))?(9分)則g′(a)=2a-eq\f(1,a)=eq\f(2a2-1,a),令g′(a)<0,則0<a<eq\f(\r(2),2);令g′(a)>0,則a>eq\f(\r(2),2),所以g(a)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))上單調(diào)遞減,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),+∞))上單調(diào)遞增,(11分)
所以g(a)min=geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-eq\f(1,2)-ln
eq\f(\r(2),2)=lneq\r(2)>0,?則g(a)>0恒成立,所以當(dāng)a>0時,f(x)>2lna+eq\f(3,2)恒成立,證畢.(12分)①②處判斷f′(x)的符號③處利用單調(diào)性求f(x)min④處構(gòu)造函數(shù)g(a)=f(x)min-eq\b\lc\(\rc\)(\a\vs4\al\co1(2lna+\f(3,2)))⑤處求g(a)min并判斷其符號⑥處構(gòu)造函數(shù)證明ex≥x+1⑦處通過不等式ex≥x+1放縮函數(shù)f(x)⑧處構(gòu)造函數(shù)g(a)⑨處求g(a)min并判斷其符號培優(yōu)點1切線放縮例1證明(1)首先證明sinx≤x,x∈[0,+∞),證明如下:構(gòu)造j(x)=sinx-x,x∈[0,+∞),則j′(x)=cosx-1≤0恒成立,故j(x)=sinx-x在[0,+∞)上單調(diào)遞減,故j(x)≤j(0)=0,所以sinx≤x,x∈[0,+∞).當(dāng)a=1時,f(x)=sinx-ln(x+1),x∈[0,1],f′(x)=cosx-eq\f(1,1+x)=1-2sin2eq\f(x,2)-eq\f(1,1+x)≥1-2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x,2)))2-eq\f(1,x+1)=1-eq\f(x2,2)-eq\f(1,1+x)≥1-eq\f(x,2)-eq\f(1,x+1)(0≤x≤1),故f′(x)≥eq\f(2+2x-x2-x-2,2+2x)=eq\f(x1-x,2+2x)≥0在x∈[0,1]上恒成立,所以f(x)在[0,1]上單調(diào)遞增,故f(x)≥f(0)=0.(2)令g(x)=(2ex-2)-f(x),x∈[0,+∞).當(dāng)a=-1時,g(x)=2ex-2-sinx-ln(x+1)=2(ex-x-1)+x-sinx+x-ln(x+1),下證:ex-x-1≥0(x≥0),x-sinx≥0(x≥0),x-ln(x+1)≥0(x≥0),且在x=0處取等號,令r(x)=ex-x-1(x≥0),則r′(x)=ex-1≥0,故r(x)=ex-x-1在[0,+∞)上單調(diào)遞增,故r(x)≥r(0)=0,且在x=0處取等號,由(1)知j(x)=sinx-x在[0,+∞)上單調(diào)遞減,故j(x)≤j(0)=0,且在x=0處取等號,令t(x)=x-ln(x+1)(x≥0),則t′(x)=1-eq\f(1,x+1)=eq\f(x,x+1)≥0,故t(x)=x-ln(x+1)在[0,+∞)上單調(diào)遞增,故t(x)≥t(0)=0,且在x=0處取等號,綜上有g(shù)(x)=2(ex-x-1)+x-sinx+x-ln(x+1)≥0,且在x=0處取等號,即(2ex-2)-f(x)≥0,即證f(x)≤2ex-2. 跟蹤演練1(1)解由題意可知x>0,f′(x)=eq\f(1,x)-eq\f(a,x2)-2=-eq\f(2x2-x+a,x2),對于二次函數(shù)y=2x2-x+a,Δ=1-8a.當(dāng)a≥eq\f(1,8)時,Δ≤0,f′(x)≤0恒成立,f(x)在(0,+∞)上單調(diào)遞減;當(dāng)0<a<eq\f(1,8)時,二次函數(shù)y=-2x2+x-a有2個大于零的零點,分別是x1=eq\f(1-\r(1-8a),4),x2=eq\f(1+\r(1-8a),4),當(dāng)x∈eq\b\lc\(\rc\(\a\vs4\al\co1(\f(1-\r(1-8a),4),))eq\b\lc\\rc\)(\a\vs4\al\co1(\f(1+\r(1-8a),4)))時,f′(x)>0,f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1-\r(1-8a),4),\f(1+\r(1-8a),4)))上單調(diào)遞增;當(dāng)x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1-\r(1-8a),4)))∪eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1+\r(1-8a),4),+∞))時,f′(x)<0,f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1-\r(1-8a),4)))和eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1+\r(1-8a),4),+∞))上單調(diào)遞減.綜上,當(dāng)a≥eq\f(1,8)時,f(x)在(0,+∞)上單調(diào)遞減;當(dāng)0<a<eq\f(1,8)時,f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1-\r(1-8a),4),\f(1+\r(1-8a),4)))上單調(diào)遞增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1-\r(1-8a),4))),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1+\r(1-8a),4),+∞))上單調(diào)遞減.(2)證明要證ex+eq\f(a-2x2-2x,x)>f(x),即證ex>lnx+2.不妨設(shè)h(x)=ex-(x+1),則h′(x)=ex-1,h′(0)=0,當(dāng)x<0時,h′(0)<0,當(dāng)x>0時,h′(0)>0,因此h(x)≥h(0)=0,ex-(x+1)≥0恒成立.令m(x)=lnx-x+1,m′(x)=eq\f(1,x)-1=eq\f(1-x,x),當(dāng)0<x<1時,m′(x)>0,m(x)單調(diào)遞增,當(dāng)x>1時,m′(x)<0,m(x)單調(diào)遞減,故當(dāng)x=1時,m(x)取得最大值m(1)=0,因此lnx-x+1≤0,則ex-(x+1)+[x-(lnx+1)]=ex-(lnx+2)>0恒成立(等號成立的條件不一致,故舍去),即ex>lnx+2.從而不等式得證.例2證明f(x)的定義域為(0,+∞),f′(x)=lnx.令f′(x)>0,得x>1;令f′(x)<0得,0<x<1,所以f(x)在區(qū)間(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.因為f(x)=b有兩個實數(shù)根x1,x2,且x1<x2.所以0<x1<1<x2,先證不等式x2-x1<2b+e+eq\f(1,e),因為f(e)=0,f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)))=-eq\f(2,e),f′(e)=1,f′eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)))=-1,所以曲線y=f(x)在x=eq\f(1,e)和x=e處的切線分別為l1:y=-x-eq\f(1,e)和l2:y=x-e,如圖,令g(x)=f(x)-eq\b\lc\(\rc\)(\a\vs4\al\co1(-x-\f(1,e)))=xlnx+eq\f(1,e),0<x<1,則g′(x)=1+lnx,令g′(x)>0,則eq\f(1,e)<x<1;令g′(x)<0,則0<x<eq\f(1,e),所以g(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,e)))上單調(diào)遞減,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e),1))上單調(diào)遞增, 所以g(x)≥geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)))=0,所以f(x)≥-x-eq\f(1,e)在(0,1)上恒成立,設(shè)直線y=b與直線l1交點的橫坐標(biāo)為x′1,則x′1≤x1,設(shè)直線y=b與直線l2交點的橫坐標(biāo)為x′2,同理可證x2≤x′2,因為x′1=-b-eq\f(1,e),x′2=b+e,所以x2-x1<x′2-x′1=b+e-eq\b\lc\(\rc\)(\a\vs4\al\co1(-b-\f(1,e)))=2b+e+eq\f(1,e)(兩個等號不同時成立),因此x2-x1<2b+e+eq\f(1,e).再證不等式x2-x1>be+e,函數(shù)圖象f(x)上有兩點A(1,-1),B(e,0),設(shè)直線y=b與直線OA:y=-x,AB:y=eq\f(1,e-1)(x-e)的交點的橫坐標(biāo)分別為x3,x4,易證x1<x3<x4<x2,且x3=-b,x4=(e-1)b+e,所以x2-x1>x4-x3=(e-1)b+e-(-b)=be+e.綜上可得be+e<x2-x1<2b+e+eq\f(1,e)成立.跟蹤演練2證明f(x)=(x+1)(ex-1),令f(x)=0,有x1=-1,x2=0,f′(x)=ex(x+2)-1,f′(-1)=-1+eq\f(1,e),f′(0)=1,設(shè)曲線y=f(x)在(-1,0)處的切線方程為y=h(x),則h(x)=f′(-1)(x+1)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)-1))(x+1),令F(x)=f(x)-h(huán)(x)=(x+1)eq\b\lc\(\rc\)(\a\vs4\al\co1(ex-\f(1,e))),則F′(x)=(x+2)ex-eq\f(1,e),令m(x)=F′(x)=(x+2)ex-eq\f(1,e),則m′(x)=(x+3)ex,所以當(dāng)x<-3時,m′(x)<0;當(dāng)x>-3時,m′(x)>0,所以F′(x)在(-∞,-3)上單調(diào)遞減,在(-3,+∞)上單調(diào)遞增,當(dāng)x→-∞時,F(xiàn)′(x)→-eq\f(1,e),又F′(-1)=0,所以當(dāng)x<-1時,F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減;當(dāng)x>-1時,F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增,所以F(x)≥F(-1)=0,所以f(x)≥h(x)恒成立,則f(x1)≥h(x1),設(shè)h(x)=m的根為x3,則x3=-1+eq\f(em,1-e),又h(x)單調(diào)遞減,且m=heq\b\lc\(\rc\)(\a\vs4\al\co1(x3))=f(x1)≥h(x1),所以x3≤x1,設(shè)曲線y=f(x)在(0,0)處的切線為y=t(x),則t(x)=x,令G(x)=f(x)-t(x)=(x+1)(ex-1)-x,則G′(x)=(x+2)ex-2,依據(jù)F′(x)的單調(diào)性可知,G′(x)在(-∞,-3)上單調(diào)遞減,在(-3,+∞)上單調(diào)遞增,當(dāng)x→-∞時,G′(x)→-2,且G′(0)=0,所以G(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,所以G(x)≥G(0)=0,所以f(x)≥t(x)恒成立,所以f(x2)≥t(x2),設(shè)t(x)=m的根為x4,則x4=m,又函數(shù)t(x)單調(diào)遞增,且m=t(x4)=f(x2)≥t(x2),所以x4≥x2,所以x2-x1≤x4-x3=m-eq\b\lc\(\rc\)(\a\vs4\al\co1(-1+\f(em,1-e)))=1+eq\f(2e-1m,e-1)=1+2m+eq\f(m,e-1),即證x2-x1≤1+2m+eq\f(m,e-1).培優(yōu)點2隱零點問題例1解(1)由題知,f′(x)=(x2-1)ex-a(x2-1)=(x-1)(x+1)(ex-a).若a≤1,當(dāng)0<x<1時,f′(x)<0;當(dāng)x>1時,f′(x)>0,∴f(x)在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增;若1<a<e,即0<lna<1,當(dāng)0<x<lna或x>1時,f′(x)>0;當(dāng)lna<x<1時,f′(x)<0;∴f(x)在區(qū)間(0,lna)上單調(diào)遞增,在區(qū)間(lna,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增;若a=e,f′(x)≥0,∴f(x)在定義域上是增函數(shù);若a>e,即lna>1,當(dāng)0<x<1或x>lna時,f′(x)>0;當(dāng)1<x<lna時,f′(x)<0;∴f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,lna)上單調(diào)遞減,在區(qū)間(lna,+∞)上單調(diào)遞增.(2)當(dāng)a=0時,g(x)=lnx-eq\f(1,2)x2+(x-1)2ex,定義域為(0,+∞),∴g′(x)=eq\f(1,x)-x+(x2-1)ex=(x+1)(x-1)eq\b\lc\(\rc\)(\a\vs4\al\co1(ex-\f(1,x))),設(shè)h(x)=ex-eq\f(1,x)(x>0),∴h′(x)=ex+eq\f(1,x2)>0,∴h(x)在定義域上是增函數(shù),∵h(yuǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))=eq\r(e)-2<0,h(1)=e-1>0,∴存在唯一x0∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1)),使h(x0)=0,即-eq\f(1,x0)=0,=eq\f(1,x0),-x0=lnx0, 當(dāng)0<x<x0時,h(x)<0,即g′(x)>0;當(dāng)x0<x<1時,h(x)>0,即g′(x)<0;當(dāng)x>1時,h(x)>0,即g′(x)>0,∴g(x)在區(qū)間(0,x0)上單調(diào)遞增,在區(qū)間(x0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增,∴當(dāng)x=x0時,g(x)取極大值g(x0)=lnx0-eq\f(1,2)xeq\o\al(2,0)+(x0-1)2=-eq\f(1,2)xeq\o\al(2,0)+eq\f(1,x0)-2,設(shè)F(x)=-eq\f(1,2)x2+eq\f(1,x)-2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)<x<1)),易知F(x)在區(qū)間eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1))上單調(diào)遞減.∴g(x0)<geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))=-eq\f(1,8)<0,∴g(x)在(0,1)內(nèi)無零點,∵g(1)=-eq\f(1,2)<0,g(2)=e2-2+ln2>0,∴g(x)在(1,+∞)內(nèi)有且只有一個零點,綜上所述,g(x)有且只有一個零點.跟蹤演練1(1)解設(shè)切點坐標(biāo)為(x0,f(x0)),由f′(x)=eq\f(1,x)-a,得f′(x0)=eq\f(1,x0)-a,所以切線方程為y-(lnx0-ax0+1)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x0)-a))(x-x0),即y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x0)-a))x+lnx0.因為直線y=2x與函數(shù)f(x)的圖象相切,所以eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,x0)-a=2,,lnx0=0,))解得a=-1.(2)證明當(dāng)a=-1時,f(x)=lnx+x+1,令F(x)=g(x)-f(x)+x2=xex-lnx-x-1(x>0),則F′(x)=(x+1)ex-eq\f(1,x)-1=eq\f(x+1,x)eq\b\lc\(\rc\)(\a\vs4\al\co1(xex-1)),令G(x)=xex-1(x>0),則G′(x)=(x+1)ex>0,所以函數(shù)G(x)在區(qū)間(0,+∞)上單調(diào)遞增,又G(0)=-1<0,G(1)=e-1>0,所以函數(shù)G(x)存在唯一的零點x0∈(0,1),且當(dāng)x∈(0,x0)時,G(x)<0,F(xiàn)′(x)<0;當(dāng)x∈(x0,+∞)時,G(x)>0,F(xiàn)′(x)>0.所以函數(shù)F(x)在(0,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,故F(x)min=F(x0)=x0-lnx0-x0-1,由G(x0)=0得x0-1=0,兩邊取對數(shù)得lnx0+x0=0,故F(x0)=0,所以g(x)-f(x)+x2≥0,即f(x)≤g(x)+x2.例2(1)解當(dāng)a=e時,f(x)=ex+1-ln(x+1)-1,f(0)=e-1.f′(x)=ex+1-eq\f(1,x+1),f′(0)=e-1,故曲線y=f(x)在點(0,f(0))處的切線方程為y-(e-1)=(e-1)x,即y=(e-1)x+e-1.因為該切線在x,y軸上的截距分別為-1和e-1,所以該切線與兩坐標(biāo)軸所圍成的三角形的面積S=eq\f(1,2)×|-1|×(e-1)=eq\f(e-1,2).(2)證明當(dāng)a>1時,因為f(x)=aex-ln(x+1)-1,所以f′(x)=aex-eq\f(1,x+1)=eq\f(aexx+1-1,x+1)(x>-1),令g(x)=aex(x+1)-1(x>-1),則g′(x)=aex(x+2),因為a>1,x>-1,所以g′(x)>0,所以g(x)在(-1,+∞)上單調(diào)遞增,又g(-1)=-1<0,g(0)=a-1>0,故g(x)在(-1,0)上有唯一的零點β,即g(β)=0,因此有aeβ(β+1)=1.當(dāng)x∈(-1,β)時,g(x)<0,即f′(x)<0;當(dāng)x∈(β,+∞)時,g(x)>0,即f′(x)>0.所以f(x)在(-1,β)上單調(diào)遞減,在(β,+∞)上單調(diào)遞增,故f(β)為最小值.由aeβ(β+1)=1,得-ln(β+1)=lna+β,所以當(dāng)-1<β<0時,f(β)=aeβ-ln(β+1)-1=eq\f(1,β+1)+β-1+lna=lna+eq\f(β2,β+1),因為a>1,所以lna>0,又因為-1<β<0,所以eq\f(β2,β+1)>0,所以f(β)>0.所以f(x)≥f(β)>0.因此當(dāng)a>1時,f(x)沒有零點.跟蹤演練2解(1)函數(shù)f(x)=x-lnx-2的定義域是(0,+∞),f′(x)=1-eq\f(1,x),當(dāng)x∈(0,1)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減,當(dāng)x∈(1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增,所以函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,1),單調(diào)遞增區(qū)間是(1,+∞).(2)?x∈(1,+∞),xlnx+x>k(x-1)?k<eq\f(xlnx+x,x-1),令g(x)=eq\f(xlnx+x,x-1),x>1,求導(dǎo)得g′(x)=eq\f(2+lnxx-1-xlnx+x,x-12)=eq\f(x-lnx-2,x-12),由(1)知,f(x)=x-lnx-2在(1,+∞)上單調(diào)遞增,f(3)=1-ln3<0,f(4)=2(1-ln2)>0,因此存在唯一x0∈(3,4),使得f(x0)=0,即x0-lnx0-2=0?lnx0=x0-2,當(dāng)x∈(1,x0)時,f(x)<0,即g′(x)<0,當(dāng)x∈(x0,+∞)時,f(x)>0,即g′(x)>0,因此函數(shù)g(x)在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,于是g(x)min=g(x0)=eq\f(x0lnx0+x0,x0-1)=eq\f(x0x0-2+x0,x0-1)=x0,則k<x0∈(3,4),所以整數(shù)k的最大值是3. 培優(yōu)點3同構(gòu)函數(shù)問題例1(1)BC[因為eysinx=exsiny,所以eq\f(sinx,ex)=eq\f(siny,ey),令g(t)=eq\f(sint,et),0<t<π,所以g(x)=g(y),則g′(t)=eq\f(etcost-etsint,et2)=eq\f(cost-sint,et),由g′(t)>0有t∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,4))),由g′(t)<0有t∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4),π)),所以g(t)=eq\f(sint,et)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,4)))上單調(diào)遞增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4),π))上單調(diào)遞減,因為0<x<y<π,由g(x)=g(y)有0<x<eq\f(π,4)<y<π,故A錯誤,B正確;因為0<x<y<π,所以ey>ex,由eq\f(sinx,ex)=eq\f(siny,ey)有siny>sinx,故D錯誤;因為0<x<eq\f(π,4)<y<π,所以cosx=eq\
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度嬰幼兒早期教育及家政服務(wù)合同3篇
- 工貿(mào)油品調(diào)運分公司勞動合同管理辦法
- 甘肅省甘南藏族自治州(2024年-2025年小學(xué)六年級語文)統(tǒng)編版競賽題((上下)學(xué)期)試卷及答案
- 高速公路改造項目初步設(shè)計
- 二零二五年度建筑行業(yè)概算定額資料下載與咨詢合同3篇
- 中國膠合板行業(yè)研究報告:市場規(guī)模、供需態(tài)勢、發(fā)展前景預(yù)測
- 高速公路技術(shù)可行性分析
- 二零二五年度建筑工程公司實習(xí)生用工實習(xí)協(xié)議3篇
- 藝術(shù)中心建設(shè)項目可行性研究報告
- NBT 31021-2012風(fēng)力發(fā)電企業(yè)科技文件規(guī)檔規(guī)范
- 嬰幼兒托育機構(gòu)安全防護-整體環(huán)境布局安全隱患識別與排除策略
- GB 28008-2024家具結(jié)構(gòu)安全技術(shù)規(guī)范
- 消防技能訓(xùn)練-射水姿勢與形式課件講解
- 公安學(xué)基礎(chǔ)智慧樹知到期末考試答案章節(jié)答案2024年山東警察學(xué)院
- 2024智慧醫(yī)院醫(yī)用耗材SPD供應(yīng)鏈績效評價指南
- DB44-T 2480-2024 鋁及鋁合金深井鑄造安全技術(shù)規(guī)范
- 護士分級分類管理規(guī)定及評價細(xì)則
- GB/T 15115-2024壓鑄鋁合金
- 中醫(yī)適宜技術(shù)發(fā)展現(xiàn)狀
- 部編人教版四年級數(shù)學(xué)上冊期末考試卷(可打印)
評論
0/150
提交評論