![重慶綦江區(qū)2023-2024學年高考壓軸卷數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view10/M00/2A/2F/wKhkGWXWe9yAKexQAAGLOkttaAY186.jpg)
![重慶綦江區(qū)2023-2024學年高考壓軸卷數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view10/M00/2A/2F/wKhkGWXWe9yAKexQAAGLOkttaAY1862.jpg)
![重慶綦江區(qū)2023-2024學年高考壓軸卷數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view10/M00/2A/2F/wKhkGWXWe9yAKexQAAGLOkttaAY1863.jpg)
![重慶綦江區(qū)2023-2024學年高考壓軸卷數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view10/M00/2A/2F/wKhkGWXWe9yAKexQAAGLOkttaAY1864.jpg)
![重慶綦江區(qū)2023-2024學年高考壓軸卷數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view10/M00/2A/2F/wKhkGWXWe9yAKexQAAGLOkttaAY1865.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶綦江區(qū)2023-2024學年高考壓軸卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結(jié)果為()A. B.6 C. D.2.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.43.下圖為一個正四面體的側(cè)面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.4.已知命題,那么為()A. B.C. D.5.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.06.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.7.已知復數(shù)(為虛數(shù)單位)在復平面內(nèi)對應的點的坐標是()A. B. C. D.8.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.9.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.10.已知角的終邊經(jīng)過點,則A. B.C. D.11.已知集合,集合,則等于()A. B.C. D.12.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(1,2),=(-3,1),則=______.14.根據(jù)如圖的算法,輸出的結(jié)果是_________.15.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________16.《九章算術》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.19.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值20.(12分)已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.21.(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.22.(10分)已知函數(shù).(1)討論函數(shù)f(x)的極值點的個數(shù);(2)若f(x)有兩個極值點證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結(jié)構的程序框圖的應用,正確依次寫出每次循環(huán)得到的與的值是解題的關鍵,難度較易.2、A【解析】
根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學生的計算能力.3、C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.4、B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.5、B【解析】
先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點睛】本題考查向量的幾何意義,考查投影公式的應用,是基礎題.6、A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.7、A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內(nèi)對應的點的坐標是.故選:A.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.8、D【解析】
連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計算能力.9、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數(shù)在上單調(diào)遞增,當時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.【點睛】本題考查了導數(shù)在判斷函數(shù)單調(diào)性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.10、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.11、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.12、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-6【解析】
由可求,然后根據(jù)向量數(shù)量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數(shù)量積的坐標表示,屬于基礎試題.14、55【解析】
根據(jù)該For語句的功能,可得,可得結(jié)果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.15、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.16、3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.18、(1),(2)存在,【解析】
(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉(zhuǎn)化為極坐標方程.根據(jù)極坐標和直角坐標轉(zhuǎn)化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.【點睛】本小題主要考查坐標變換,考查直線和圓的位置關系,考查極坐標方程和直角坐標方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.19、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應用,屬于中檔題.20、(1)(2)存在,【解析】
由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項公式即可求出,進而求出;由題意得,,,兩式相減得,,據(jù)此可得,當時,,進而可得,即數(shù)列為常數(shù)列,進而可得,結(jié)合,得到關于的不等式,再由時,且為整數(shù)即可求出符合題意的的所有值.【詳解】因為數(shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項,以為公比的等比數(shù)列,所以,因為,所以.(2)由題意得,故,兩式相減得所以,當時,又因為所以當時,所以成立,所以當時,數(shù)列是常數(shù)列,所以因為當時,成立,所以,所以在中令,因為,所以可得,所以,由時,且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點睛】本題考查數(shù)列的新定義、等比數(shù)列的通項公式和數(shù)列遞推公式的運用;考查運算求解能力、邏輯推理能力和對新定義的理解能力;通過反復利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關鍵;屬于綜合型強、難度大型試題.21、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設點P(x0,),由x2=2py(p>0)得,y=,求導y′=,因為直線PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因為點P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當且僅當時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+1.考點:求拋物線的方程,與拋物線有關的最值問題.22、(1)見解析(2)見解析【解析】
(1)求得函數(shù)的定義域和導函數(shù),對分成三種情況進行分類討論,判斷出的極值點個數(shù).(2)由(1)知,結(jié)合韋達定理求得的關系式,由此化簡的表達式為,通過構造函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代家教新思路實踐案例解析
- 遠程教育在寵物行業(yè)人才培養(yǎng)中的應用
- 風險導向下企業(yè)內(nèi)部財務控制的改進措施研究
- 餐飲應急預案
- 監(jiān)控施工方案范文(6篇)
- 二手機械銷售合同模板
- KTV裝修合同執(zhí)行管理制度范文
- 不銹鋼建筑材料加工合同
- 交通損害賠償合同示例
- 業(yè)務合作及分成合同書
- WTC瓦斯突出參數(shù)儀操作規(guī)程
- 2022年云上貴州大數(shù)據(jù)(集團)有限公司招聘筆試試題及答案解析
- 10kV中壓開關柜知識培訓課件
- 《工程測試技術》全套教學課件
- 自卸車司機實操培訓考核表
- 教師個人基本信息登記表
- 中考現(xiàn)代文閱讀理解題精選及答案共20篇
- ESD測試作業(yè)指導書-防靜電手環(huán)
- 高頻變壓器的制作流程
- 春季開學安全第一課PPT、中小學開學第一課教育培訓主題班會PPT模板
- JJG30-2012通用卡尺檢定規(guī)程
評論
0/150
提交評論