因式分解之平方差公式法_第1頁
因式分解之平方差公式法_第2頁
因式分解之平方差公式法_第3頁
因式分解之平方差公式法_第4頁
因式分解之平方差公式法_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

14.3.2因式分解----課型:新授課主備人:羅昭敏使用時間:周使用人:審核:學習目標知識目標:使學生進一步理解因式分解的意義;使學生理解平方差公式的意義,弄清公式的形式和特征;會運用平方差公式分解因式.能力目標:經(jīng)歷探索平方差公式法分解因式的過程,體會整式乘法與分解因式之間的聯(lián)系;學會逆向思維,滲透化歸的思想方法.情感態(tài)度價值觀:通過探究平方差公式法,獲得成功的體驗,鍛煉克服困難的意志。教學難點:掌握平方差公式進行因式分解的結構特征。教學重點用平方差公式法進行因式分解.上一節(jié)課我們已經(jīng)學習了提取公因式分解因式,其實因式分解中蘊含著許許多多的方法,那么今天我們就一起來學習它們中的另一種方法---公式法。下面我們一起來看這個有規(guī)律的題一、創(chuàng)設情境引入計算下列各式的值,并將左右兩邊值相等的式子用線連接起來。(15+10)(15-10)(15+10)(15-10)(6+3)(6-3)(6+3)(6-3)(12+4)(12-4)(12+4)(12-4)學生回答:二、進入新課教師:為了同學們能夠觀察得更仔細,我將上面的連線整理成三個等式,1、觀察、歸納①請同學們觀察上面的的三個等式的右邊有什么特點?再觀察等式的左邊有什么特點?②請同學們觀察上面的的三個等式與我們前面學習的整式乘法中的什么公式有類似之處?你是從等號的哪邊得到的?③現(xiàn)在又請同學們從等式的從邊往右邊看,看你能找到什么規(guī)律?④剛才同學們已經(jīng)找到了它們的規(guī)律,我們今天學習的等式的規(guī)律大家試著與我們前面學到的整式乘法的平方差公式比較一下,看它們之間有什么樣的關系呢?學生回答:位置相反,互逆等⑤誰能用語言把今天學習的等式的規(guī)律描述一下呢?學生回答:教師總結:兩個數(shù)的平方的差,等于這兩個數(shù)的和與這兩個數(shù)的差的積,其實同學們發(fā)現(xiàn)的這個規(guī)律就是今天我們要學的公式法中的平方差公式分解因式。板書課題那我們仔細從等式的左邊來觀察一下到底具備怎樣的結構特征的式子才可能分解為兩數(shù)和與這兩數(shù)的差的乘積的形式?學生回答:教師小結:第一,必須有兩項。第二,它們必需以平方的形式出現(xiàn)。第三,這兩項前的符號相反。2、下列多項式能轉化成()2-()2的形式嗎?如果能,請將其轉化成()2-()2的形式。(1)m2-1(2)4m2-9(3)x2-25y2(4)-x2-25y2(5)-x2+25y2教師板書第一個,學生獨立完成后面五個。學生先獨立思考,再舉手回答??磥硗瑢W們掌握得不錯,那老師就要出與考考你們了!3、編題考考你(1)=(2)(3)教師:第一題中的a是?b是?可以分解為?學生回答第二題中的a是?b是?可以分解為?學生回答第二題中的a是?b是?可以分解為?學生回答三個題中的a有什么特點?b呢?結論:公式中的a、b無論表示數(shù)、單項式、還是多項式,只要被分解的多項式能轉化成平方差的形式,就能用平方差公式因式分解。教師:同學們對平方差分解因式有了進一步的理解了,那我們一起來看一下用平方差分解因式的具體格式與步驟。三、例題:例:用平方差公式分解因式:(1)(2)16x2-9y2教師:第一題中直接是()2-()2的形式嗎?哪個相當于a,哪個相當于b?學生回答。教師再板書教師:第二題中直接是()2-()2的形式嗎?學生回答:不直接具備,教師:可以轉化為()2-()2的形式嗎?這時哪個相當于a,哪個相當于b?學生回答。教師再板書(3)(4)教師:第三題中直接是()2-()2的形式嗎?學生回答:不直接具備,先要交換位置教師:可以轉化為()2-()2的形式嗎?這時哪個相當于a,哪個相當于b?學生回答。教師再板書教師:第四題:這時的a是?b呢?(5)(x+p)2-(x+q)2(6)教師:第五題,這時的a是?b呢?實際上a、b是多項式。教師板書教師:第六題與第五題又多了什么呢?你知道怎么分解嗎?教師板書教師小結:在使用平方差公式分解因式時,要注意:先把要計算的式子與平方差公式對照,明確哪個相當于a,哪個相當于b.四、1、練習:把下列各式分解因式:現(xiàn)在我發(fā)現(xiàn)同學們用平方差公式分解因式特別感興趣。因此,老師特別為同學們找來四個,現(xiàn)在就交給你們了。請每個安排一個人做在小黑板上其余同學做在練習本上。①②-1+0.25m2n2③③25(2a+b)2-16(a+2b)2④25(x+y)2-16(x-y)2教師:現(xiàn)在請第3組、1組、5組上臺展示,同學們先看第三1組,它們做對沒有?學生回答:它們應該化為教師:同學們掌聲送給他。教師:現(xiàn)看第3組,它們做對沒有?學生回答:它們0.5mn的平方要打括號。教師:她非常細心,你們有沒有打括號?教師:現(xiàn)看第5組,它們做對沒有?學生回答:對!教師:第5組每個同學加上2分。五、小結:本節(jié)課你學到了什么?教師:同學們這一節(jié)課表現(xiàn)得都不錯,你能談談你本節(jié)課的收獲嗎?學生回答:1.可運用平方差公式進行因式分解的多項式特征是:(1)恰好兩項;(2)一項正,一項負;(3)可化為()2-()2.2.分解因式你已學了哪些方法?提公因式法、公式法?!镒鲆蛔觯赫匠朔ǔ朔ü剑簝蓴?shù)和乘以這兩數(shù)差:即:(a+b)(a-b)=a2-b2從左到右是整式的乘法,把這個等式反過來就是_________________________將乘法公式反過來用,對多項式進行因式分解,這種因式分解方法稱為_______.★議一議:下列多項式可以用平方差公式分解嗎?(1)x2-y2(2)x2+y2(3)-x2-y2(4)-x2+y2(5)64-a2(6)4x2-9y2總結平方差公式的特點:1.左邊是項式,每項都是的形式,兩項的符號.2.右邊是兩個多項式的積,一個因式是兩數(shù)的,另一個因式是這兩數(shù)的。三、學以致用例1.依葫蘆畫瓢:(體驗用平方差公式分解因式的過程)(1)x2-4=x2-22=(x+2)(x-2)(2)x2-16=()2-()2=()()(3)9-y2=()2-()2=()()(4)1-a2=()2-()2=()()例2.把下列多項式分解因式:(1)36-25x2(2)16a2-9b2(3)eq\f(4,9)m2-0.01n2例3.觀察公式a2-b2=(a+b)(a-b),你能抓住它的特征嗎?公式中的字母a、b不僅可以表示數(shù),而且都可以表示代數(shù)式.嘗試把下列各式分解因式(1)(x+p)2-(x+q)2(2)16(m-n)2-9(m+n)2(3)9x2-(x-2y)2例4.把下列各式分解因式(1)4a2-16(2)a5-a3(3)x4-y4(4)32a3-50ab一句話點評:.趁熱打鐵:1.分解因式:2.下列分解因式是否正確:(1)-x2-y2=(x+y)(x-y)(2)9-25a2=(9+25a)(9-(3)-4a2+9b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論