下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高中計算機方程式大全(最最)高中計算機方程式大全(最最完整版)一、線性方程1.一元一次線性方程一元一次線性方程表達式:$ax+b=0$,其中$a\neq0$2.二元一次線性方程二元一次線性方程表達式:$\begin{cases}ax+by=c\\dx+ey=f\end{cases}$,其中$ad-bc\neq0$二、二次方程1.一元二次方程一元二次方程一般形式:$ax^2+bx+c=0$,其中$a\neq0$2.二元二次方程二元二次方程表達式:$\begin{cases}ax^2+by^2+cx+dy+e=0\\fx+gy+h=0\end{cases}$,其中$ag-bf\neq0$三、三角方程1.正弦方程正弦方程一般形式:$a\sinx+b\cosx=c$2.余弦方程余弦方程一般形式:$a\cosx+b\sinx=c$四、指數與對數方程1.指數方程指數方程一般形式:$a\cdotb^x=c$2.對數方程對數方程一般形式:$\log_a(bx+c)=d$五、多項式方程1.一元高次多項式方程一元高次多項式方程一般形式:$ax^n+bx^{n-1}+\ldots+k=0$,其中$a\neq0$2.二元高次多項式方程二元高次多項式方程表達式:$P(x,y)=0$,其中$P(x,y)$是關于$x$和$y$的多項式六、根式方程根式方程是含有根式的方程,一般形式:$\sqrt[m]{f(x)}+g(x)=h(x)$,其中$m$是正整數七、綜合方程綜合方程包含多種類型的方程,一般形式:$F(x_1,x_2,\ldots,x_n)=G(x_1,x_2,\ldots,x_n)$,其中$F(x_1,x_2,\ldots,x_n)$和$G(x_1,x_2,\ldots,x_n)$是多個變量的函數---這份文檔包含了高中階段常見的計算機方程式類型及其表達式。方程式的形式多
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服務業(yè)房產買賣合同樣板
- 鐵塔檢修爬架租賃協議
- 環(huán)衛(wèi)設計瓦工施工合同范本
- 物業(yè)裝修監(jiān)管補充協議
- 綠色建筑水電路施工合同
- 音響工程合伙合同
- 醫(yī)療傳媒企業(yè)專業(yè)技術人才合同
- 水泥生產承銷協議書范本
- 智能酒店安全防護安裝協議
- 員工出行管理規(guī)則
- 部編版四年級上冊語文期末測試卷(附答案)
- 綠色施工技術在道路工程中的經濟效益與社會效益
- 2024年中考作文十二大高頻熱點主題1-至愛親情(素材)
- 奧的斯GECS配有 MESD 的 GCS扶梯控制軟件扶梯服務器調試手冊2015
- clsim100-32藥敏試驗標準2023中文版
- 廠務動力系統培訓課件
- 30題解決方案工程師崗位常見面試問題含HR問題考察點及參考回答
- 浙江2024年01月高考:《政治》科目考試真題與參考答案
- (2024年)臨床檢驗醫(yī)學課件
- 英才計劃面試常見問題及解答
- 2024年度《蟬》(完美版)課件
評論
0/150
提交評論