山東省即墨區(qū)重點(diǎn)高中2024屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第1頁(yè)
山東省即墨區(qū)重點(diǎn)高中2024屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第2頁(yè)
山東省即墨區(qū)重點(diǎn)高中2024屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第3頁(yè)
山東省即墨區(qū)重點(diǎn)高中2024屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第4頁(yè)
山東省即墨區(qū)重點(diǎn)高中2024屆高三下第一次測(cè)試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省即墨區(qū)重點(diǎn)高中2024屆高三下第一次測(cè)試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③2.設(shè)函數(shù)的定義域?yàn)椋瑵M足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是().A. B. C. D.3.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+14.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿足.則等于()A. B. C. D.6.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.27.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件8.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.279.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c10.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示月日至月日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù)C.月日至月日新增確診人數(shù)波動(dòng)最大D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值11.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)12.在中,角的對(duì)邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形二、填空題:本題共4小題,每小題5分,共20分。13.已知、為正實(shí)數(shù),直線截圓所得的弦長(zhǎng)為,則的最小值為_(kāi)_________.14.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.15.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.16.圓關(guān)于直線的對(duì)稱圓的方程為_(kāi)____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè),,其中.(1)當(dāng)時(shí),求的值;(2)對(duì),證明:恒為定值.18.(12分)在中,內(nèi)角的邊長(zhǎng)分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時(shí),點(diǎn)構(gòu)成曲線,證明:過(guò)原點(diǎn)的任意直線與曲線有且僅有一個(gè)公共點(diǎn).20.(12分)在銳角中,,,分別是角,,所對(duì)的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.21.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點(diǎn),與相交于點(diǎn).(1)求證:平面;(2)求直線與平面所成的角的正弦值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于x的不等式;(2)當(dāng)時(shí),若對(duì)任意實(shí)數(shù),都成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過(guò)恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.2、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),,,,又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.3、C【解析】

首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時(shí),等式左端=1+1+…+k1,當(dāng)n=k+1時(shí),等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(xiàng)(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點(diǎn)睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./4、D【解析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5、A【解析】

根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.7、C【解析】

先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域?yàn)榛颍ㄇ遥┝?,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【點(diǎn)睛】本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問(wèn)題,充要條件的判斷,屬于基礎(chǔ)題.8、D【解析】

設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問(wèn)題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.9、A【解析】

利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、D【解析】

根據(jù)新增確診曲線的走勢(shì)可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線的走勢(shì)可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對(duì)于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì),A選項(xiàng)正確;對(duì)于B選項(xiàng),由圖象可知,隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù),B選項(xiàng)正確;對(duì)于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動(dòng)最大,C選項(xiàng)正確;對(duì)于D選項(xiàng),在月日及以前,我國(guó)新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11、C【解析】

畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.12、C【解析】

利用正弦定理將邊化角,再由,化簡(jiǎn)可得,最后分類討論可得;【詳解】解:因?yàn)樗运运运运援?dāng)時(shí),為直角三角形;當(dāng)時(shí)即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)弦長(zhǎng),半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長(zhǎng)為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對(duì)目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.14、0.08【解析】

先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點(diǎn)睛】本題主要考查數(shù)據(jù)的方差,明確方差的計(jì)算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).15、231,321,301,1【解析】

分個(gè)位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個(gè)數(shù)字所組成的無(wú)重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16、【解析】

求出圓心關(guān)于直線的對(duì)稱點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對(duì)稱點(diǎn)設(shè)為,則有:,解得,所以對(duì)稱后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對(duì)稱圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)1(2)1【解析】分析:(1)當(dāng)時(shí)可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當(dāng)時(shí),,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點(diǎn)睛:本題考查組合數(shù)的有關(guān)運(yùn)算,解題時(shí)要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運(yùn)算量較大,解題時(shí)要注意運(yùn)算的準(zhǔn)確性,避免出現(xiàn)錯(cuò)誤.18、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計(jì)算即可得到所求值;

(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡(jiǎn)可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點(diǎn)睛】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.19、(1);(2)證明見(jiàn)解析【解析】

(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對(duì)任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點(diǎn),即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時(shí),;時(shí),,即時(shí),;時(shí),,時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,時(shí),取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點(diǎn),則,,,曲線的方程為.故只需證明對(duì)任意,方程有唯一解.令,則,①當(dāng)時(shí),恒成立,在上單調(diào)遞增.,,,存在滿足時(shí),使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時(shí),二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時(shí),二次函數(shù),滿足,此時(shí)有兩個(gè)不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,當(dāng)時(shí),的極大值為.,,,,,..下面來(lái)證明,構(gòu)造函數(shù),則,當(dāng)時(shí),,此時(shí)單調(diào)遞增,,時(shí),,,故成立.,存在,使得.又在單調(diào)遞增,為唯一解.所以,對(duì)任意,方程有唯一解,即過(guò)原點(diǎn)任意的直線與曲線有且僅有一個(gè)公共點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,考查不等式恒成立問(wèn)題,考查利用單調(diào)性研究圖象交點(diǎn)問(wèn)題,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于難題.20、A【解析】

由正弦定理化簡(jiǎn)得,解得,進(jìn)而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論