數(shù)字電路第二版賈立新1數(shù)字邏輯基礎(chǔ)習(xí)題解答_第1頁
數(shù)字電路第二版賈立新1數(shù)字邏輯基礎(chǔ)習(xí)題解答_第2頁
數(shù)字電路第二版賈立新1數(shù)字邏輯基礎(chǔ)習(xí)題解答_第3頁
數(shù)字電路第二版賈立新1數(shù)字邏輯基礎(chǔ)習(xí)題解答_第4頁
數(shù)字電路第二版賈立新1數(shù)字邏輯基礎(chǔ)習(xí)題解答_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自我檢測題1.〔26.125〕10=〔11010.001〕2=〔1A.2〕162.〔100.9375〕10=〔1100100.1111〕23.〔1011111.01101〕2=〔137.32〕8=〔95.40625〕104.〔133.126〕8=〔5B.2B〕165.〔1011〕2×〔101〕2=〔110111〕26.〔486〕10=〔〕8421BCD=〔〕余3BCD7.〔5.14〕10=〔0101.00010100〕8421BCD8.〔10010011〕8421BCD=〔93〕109.根本邏輯運(yùn)算有與、或、非3種。10.兩輸入與非門輸入為01時,輸出為1。11.兩輸入或非門輸入為01時,輸出為0。12.邏輯變量和邏輯函數(shù)只有0和1兩種取值,而且它們只是表示兩種不同的邏輯狀態(tài)。13.當(dāng)變量ABC為100時,AB+BC=0,〔A+B〕〔A+C〕=__1__。14.描述邏輯函數(shù)各個變量取值組合和函數(shù)值對應(yīng)關(guān)系的表格叫真值表。15.用與、或、非等運(yùn)算表示函數(shù)中各個變量之間邏輯關(guān)系的代數(shù)式叫邏輯表達(dá)式。16.根據(jù)代入規(guī)那么可從可得到。17.寫出函數(shù)Z=ABC+〔A+BC〕〔A+C〕的反函數(shù)=。18.邏輯函數(shù)表達(dá)式F=〔A+B〕〔A+B+C〕〔AB+CD〕+E,那么其對偶式F'=__〔AB+ABC+〔A+B〕〔C+D〕〕E。19.,其對偶式F'=。20.的最簡與-或式為Y=。21.函數(shù)的最小項表達(dá)式為Y=∑m〔1,3,9,11,12,13,14,15〕。22.約束項是不會出現(xiàn)的變量取值所對應(yīng)的最小項,其值總是等于0。23.邏輯函數(shù)F〔A,B,C〕=∏M〔1,3,4,6,7〕,那么F〔A,B,C〕=∑m〔0,2,5〕。24.VHDL的根本描述語句包括并行語句和順序語句。25.VHDL的并行語句在結(jié)構(gòu)體中的執(zhí)行是并行的,其執(zhí)行方式與語句書寫的順序無關(guān)。26.在VHDL的各種并行語句之間,可以用信號來交換信息。27.VHDL的PROCESS〔進(jìn)程〕語句是由順序語句組成的,但其本身卻是并行語句。28.VHDL順序語句只能出現(xiàn)在進(jìn)程語句內(nèi)部,是按程序書寫的順序自上而下、一條一條地執(zhí)行。29.VHDL的數(shù)據(jù)對象包括常數(shù)、變量和信號,它們是用來存放各種類型數(shù)據(jù)的容器。30.以下各組數(shù)中,是6進(jìn)制的是。A.14752B.62936C.5345231.二進(jìn)制數(shù)11001010,其對應(yīng)的十進(jìn)制數(shù)為。A.202B.192C.106D.32.十進(jìn)制數(shù)62對應(yīng)的十六進(jìn)制數(shù)是。A.〔3E〕16B.〔36〕16C.〔38〕16D.33.和二進(jìn)制數(shù)〔1100110111.001〕2等值的十六進(jìn)制數(shù)是。A.〔337.2〕16B.〔637.1〕16C.〔1467.1〕16D.34.以下四個數(shù)中與十進(jìn)制數(shù)〔163〕10不相等的是。A.〔A3〕16B.〔10100011〕2C.〔000101100011〕8421BCDD.〔100100011〕835.以下數(shù)中最大數(shù)是。A.〔100101110〕2B.〔12F〕16C.〔301〕10D.〔1001011136.和八進(jìn)制數(shù)〔166〕8等值的十六進(jìn)制數(shù)和十進(jìn)制數(shù)分別為。A.76H,118DB.76H,142DC.E6H,230DD.74H,116D37.A=〔10.44〕10,以下結(jié)果正確的選項是。A.A=〔1010.1〕2B.A=〔0A.8〕16C.A=〔12.4〕8D.A=〔20.21〕538.表示任意兩位無符號十進(jìn)制數(shù)需要位二進(jìn)制數(shù)。A.6B.7C39.用0、1兩個符號對100個信息進(jìn)行編碼,那么至少需要。A.8位B.7位C.9位D.6位40.相鄰兩組編碼只有一位不同的編碼是。A.2421BCD碼B.8421BCD碼C.余3碼D.格雷碼41.以下幾種說法中與BCD碼的性質(zhì)不符的是。A.一組4位二進(jìn)制數(shù)組成的碼只能表示一位十進(jìn)制數(shù)B.BCD碼是一種人為選定的0~9十個數(shù)字的代碼C.BCD碼是一組4位二進(jìn)制數(shù),能表示十六以內(nèi)的任何一個十進(jìn)制數(shù)D.BCD碼有多種42.余3碼10111011對應(yīng)的2421碼為。A.10001000B.10111011C.1110111043.一個四輸入端與非門,使其輸出為0的輸入變量取值組合有種。A.15B.8C.7D.44.一個四輸入端或非門,使其輸出為1的輸入變量取值組合有種。A.15B.8C.7D.45.A101101=。A.AB.C.0D.146.以下四種類型的邏輯門中,可以用實(shí)現(xiàn)與、或、非三種根本運(yùn)算。A.與門B.或門C.非門D.與非門47.假設(shè)將一個異或門〔設(shè)輸入端為A、B〕當(dāng)作反相器使用,那么A、B端應(yīng)連接。A.A或B中有一個接高電平; B.A或B中有一個接低電平;C.A和B并聯(lián)使用; D.不能實(shí)現(xiàn)。48.以下邏輯代數(shù)式中值為0的是。A.AAB.A1C.A049.與邏輯式相等的式子是。A.ABCB.1+BCC.AD.50.以下邏輯等式中不成立的有。A.B.C.D.51.的最簡與-或表達(dá)式為。A.F=AB.C.F=A+B+CD.都不是52.假設(shè),判斷等式成立的最簡單方法是依據(jù)。A.代入規(guī)那么B.對偶規(guī)那么C.反演規(guī)那么D.反演定理53.根據(jù)反演規(guī)那么,邏輯函數(shù)的反函數(shù)=。A.B.C.D.54.邏輯函數(shù)的對偶式F'=。A.B.C.D.55.某電路的真值表如表T1.55所示,該電路的邏輯表達(dá)式為。A.F=CB.F=ABCC.F=AB+CD.都不是表T1.55ABCFABCF0000010100110101100101110111011156.函數(shù)F=AB+BC,使F=1的輸入ABC組合為。A.ABC=000B.ABC=010C.ABC=101D.ABC=57.,以下組合中,可以肯定使F=0。A.A=0,BC=1B.B=1,C=1C.C=1,D=0D.BC=1,D=58.在以下各組變量取值中,能使函數(shù)F〔A,B,C,D〕=∑m〔0,1,2,4,6,13〕的值為l是。A.1100B.1001C.011059.以下說法中,是正確的?A.一個邏輯函數(shù)全部最小項之和恒等于1B.一個邏輯函數(shù)全部最大項之和恒等于0C.一個邏輯函數(shù)全部最小項之積恒等于1D.一個邏輯函數(shù)全部最大項之積恒等于160.標(biāo)準(zhǔn)或-與式是由構(gòu)成的邏輯表達(dá)式。A.與項相或B.最小項相或C.最大項相與D.或項相與61.邏輯函數(shù)F(A,B,C)=Σm(0,1,4,6)的最簡與非-與非式為。A.B.C.D.62.假設(shè)ABCDEFGH為最小項,那么它有邏輯相鄰項個數(shù)為。A.8B.82C.263.在四變量卡諾圖中有個小方格是“1”。A.13B.12C.6D.564.VHDL是在年正式推出的。A.1983B.1985C.1987D.65.VHDL的實(shí)體局部用來指定設(shè)計單元的。A.輸入端口B.輸出端口C.引腳D.以上均可66.一個實(shí)體可以擁有一個或多個。A.設(shè)計實(shí)體B.結(jié)構(gòu)體C.輸入D.輸出67.在VHDL的端口聲明語句中,用聲明端口為輸入方向。A.INB.OUTC.INOUTD.BUFFER68.在VHDL的端口聲明語句中,用聲明端口為具有讀功能的輸出方向。A.INB.OUTC.INOUTD.BUFFER69.在VHDL標(biāo)識符命名規(guī)那么中,以開頭的標(biāo)識符是正確的。A.字母B.?dāng)?shù)字C.字母或數(shù)字D.下劃線70.在VHDL中,目標(biāo)信號的賦值符號是。A.=:B.=C.:=D.<=習(xí)題1.有人說“五彩繽紛的數(shù)字世界全是由‘0、1’及‘與、或、非’組成的。”答:任何復(fù)雜的數(shù)字電路都可由與、或、非門組成。數(shù)字電路處理的都是0、1構(gòu)成的數(shù)字信號。2.用4位格雷碼表示0、1、2、…、8、9十個數(shù),其中規(guī)定用0000四位代碼表示數(shù)0,試寫出三種格雷碼表示形式。解:G3GG3GG3G0000000000000001001001000011011011000010010010000110010110011110011110111111111110101101110111101100110001101000100000103.書中表1.2-4中列出了多種常見的BCD編碼方案。試寫出余3循環(huán)碼的特點(diǎn),它與余3碼有何關(guān)系?解:余3循環(huán)碼的主要特點(diǎn)是任何兩個相鄰碼只有一位不同,它和余3碼的關(guān)系是:設(shè)余3碼為B3B2B1B0,余3循環(huán)碼為G3G2G1G0,可以通過以下規(guī)那么將〔1〕如果B0和B1相同,那么G0為0,否那么為1;〔2〕如果B1和B2相同,那么G1為0,否那么為1;〔3〕如果B2和B3相同,那么G2為0,否那么為1;〔4〕G3和B3相同。4.如果存在某組根本運(yùn)算,使任意邏輯函數(shù)F〔X1,X2,…,Xn〕均可用它們表示,那么稱該組根本運(yùn)算組成完備集。與、或、非三種運(yùn)算組成完備集,試證明與、異或運(yùn)算組成完備集。解:將異或門的其中一個輸入端接高電平即轉(zhuǎn)化為非門,根據(jù)可知,利用與門和非門可以構(gòu)成或門,因此,與、異或運(yùn)算可以實(shí)現(xiàn)與、或、非三種運(yùn)算,從而組成完備集。5.布爾量A、B、C存在以下關(guān)系嗎?〔1〕A+B=A+C,問B=C嗎?為什么?〔2〕AB=AC,問B=C嗎?為什么?〔3〕A+B=A+C且AB=AC,問B=C嗎?為什么?〔4〕最小項m115與m116可合并。解:〔1〕×,因?yàn)橹灰狝=1,不管B、C為何值,A+B=A+C即成立,沒有必要B=C。〔2〕×,不成立,因?yàn)橹灰狝=0,不管B、C為何值,AB=AC即成立,沒有必要B=C?!?〕√,當(dāng)A=0時,根據(jù)A+B=A+C可得B=C;當(dāng)A=1時,根據(jù)AB=AC可得B=C?!?〕×,115=1110011B116=1110100B邏輯不相鄰。6.列出邏輯函數(shù)的真值表。解:ABCY000000100100011010011011110011107.寫出如圖P1.7所示邏輯電路的與-或表達(dá)式,列出真值表。圖P1.7圖P1.8解:ABF0000111011108.寫出如圖P1.8所示邏輯電路的與-或表達(dá)式,列出真值表。解:表達(dá)式真值表ABCF000001010011100101110111000111009.試用與非門實(shí)現(xiàn)邏輯函數(shù)L=AB+BC。解:邏輯電路圖10.根據(jù)圖P1.10所示波形圖,寫出邏輯關(guān)系表達(dá)式Z=f〔A,B,C〕,并將表達(dá)式簡化成最簡或非-或非表達(dá)式和最簡與-或-非表達(dá)式。圖P1.10解:根據(jù)波形圖列出真值表:ABCZ00000011010001111000101011011111利用卡諾圖化簡得到: 或非-或非表達(dá)式 與或非表達(dá)式11.用公式法證明:解:解法一:∴Y1=Y2解法二:12.證明不等式。解:令當(dāng)D=0時,,列出函數(shù)真值表:ABCY1Y20000100110010010111110011101111100111111從真值表可知:Y1≠Y213.邏輯函數(shù),求:最簡與-或式、與非-與非式、最小項表達(dá)式。解:最簡與-或式:與非-與非式:最小項之和:14.F〔A,B,C〕=AB+BC,求其最大項之積表達(dá)式〔標(biāo)準(zhǔn)或-與式〕。解:方法一:先求最小項之和,再求最大項之積。方法二:直接求。15.某組合邏輯電路如圖P1.15所示:〔1〕寫出函數(shù)Y的邏輯表達(dá)式;〔2〕將函數(shù)Y化為最簡與-或式;〔3〕用與非門畫出其簡化后的電路。圖P1.15解: 16.與非門組成的電路如圖P1.16所示:〔1〕寫出函數(shù)Y的邏輯表達(dá)式;〔2〕將函數(shù)Y化為最簡與-或式;〔3〕用與非門畫出其簡化后的電路。圖P1.16解:,,,17.列出如圖P1.17所示邏輯電路的真值表。圖P.17解:真值表ABCL1L2ABCL1L2000101000100101101010100111001011101110018.用公式法化簡邏輯函數(shù):〔1〕〔2〕〔3〕〔4〕解〔1〕〔2〕〔3〕〔利用摩根定理〕〔包含律逆應(yīng)用〕〔4〕19.將以下邏輯函數(shù)化簡為:〔1〕最簡或-與式;〔2〕最簡或非-或非式。 解:〔1〕求函數(shù)Y的對偶式Y(jié)'〔2〕化簡Y'用公式化簡法化簡,得[配項ABD,結(jié)合律][]〔3〕求Y'的對偶式(Y')',即函數(shù)Y [最簡或-與式]再兩次求反 [最簡或非-或非式]20.假設(shè)兩個邏輯變量X、Y同時滿足X+Y=1和XY=0,那么有。利用該公理證明:。證:令,∵且〔利用公式〕〔利用公式〕〔利用公式〕〔利用公式〕〔利用公式〕∴,原等式成立。21.試用卡諾圖法將邏輯函數(shù)化為最簡與-或式:〔1〕F〔A,B,C〕=∑m〔0,1,2,4,5,7〕〔2〕F〔A,B,C,D〕=∑m〔4,5,6,7,8,9,10,11,12,13〕〔3〕F〔A,B,C,D〕=∑m〔0,2,4,5,6,7,12〕+∑d〔8,10〕〔4〕F〔A、B、C、D〕=∑m〔5、7、13、14〕+∑d〔3、9、10、11、15〕解:〔1〕〔2〕〔3〕〔4〕22.求下面函數(shù)表達(dá)式的最簡與-或表達(dá)式和最簡與-或-非表達(dá)式。F=∑m〔0,6,9,10,12,15〕+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論