氮摻雜多孔碳材料負(fù)載超細(xì)Pd納米催化劑的制備及其在催化加氫反應(yīng)中的應(yīng)用_第1頁(yè)
氮摻雜多孔碳材料負(fù)載超細(xì)Pd納米催化劑的制備及其在催化加氫反應(yīng)中的應(yīng)用_第2頁(yè)
氮摻雜多孔碳材料負(fù)載超細(xì)Pd納米催化劑的制備及其在催化加氫反應(yīng)中的應(yīng)用_第3頁(yè)
氮摻雜多孔碳材料負(fù)載超細(xì)Pd納米催化劑的制備及其在催化加氫反應(yīng)中的應(yīng)用_第4頁(yè)
氮摻雜多孔碳材料負(fù)載超細(xì)Pd納米催化劑的制備及其在催化加氫反應(yīng)中的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩80頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一章緒論1.1引言自1836年Berzelius提出“催化”一詞以來(lái),催化在各種化學(xué)和生物轉(zhuǎn)化中起著至關(guān)重要的作用ADDINEN.CITE<EndNote><Cite><Author>Cao</Author><Year>2017</Year><RecNum>52</RecNum><DisplayText><styleface="superscript">[1,2]</style></DisplayText><record><rec-number>52</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1512445760">52</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Cao,Yueling</author><author>Mao,Shanjun</author><author>Li,Mingming</author><author>Chen,Yiqing</author><author>Wang,Yong</author></authors></contributors><titles><title>Metal/PorousCarbonCompositesforHeterogeneousCatalysis:OldCatalystswithImprovedPerformancePromotedbyN-Doping</title><secondary-title>ACSCatalysis</secondary-title></titles><periodical><full-title>ACSCatalysis</full-title><abbr-1>ACSCatal.</abbr-1></periodical><pages>8090-8112</pages><volume>7</volume><number>12</number><dates><year>2017</year></dates><isbn>2155-5435 2155-5435</isbn><urls></urls><electronic-resource-num>10.1021/acscatal.7b02335</electronic-resource-num></record></Cite><Cite><RecNum>353</RecNum><record><rec-number>353</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584064642">353</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>IoanaFechetea,YeWangb,JacquesC.Védrinec</author></authors></contributors><titles><title>Thepast,presentandfutureofheterogeneouscatalysis</title><secondary-title>CatalysisToday</secondary-title></titles><periodical><full-title>CatalysisToday</full-title><abbr-1>Catal.Today</abbr-1></periodical><pages><styleface="normal"font="default"size="100%">2</style><styleface="normal"font="default"charset="134"size="100%">-27</style></pages><volume>189</volume><number>1</number><dates><year>2012</year></dates><urls></urls><electronic-resource-num>10.1016/j.cattod.2012.04.003</electronic-resource-num></record></Cite></EndNote>[1,2];不僅用于學(xué)術(shù)研究,而且用于化學(xué)工業(yè)應(yīng)用。尤其是近現(xiàn)代工業(yè)發(fā)展的關(guān)鍵時(shí)期,90%以上的化學(xué)產(chǎn)品,如燃料、聚合物、精細(xì)化學(xué)品、藥物、食品等,都是由一個(gè)或多個(gè)催化步驟合成的ADDINEN.CITEADDINEN.CITE.DATA[3,4]。不假思索地說(shuō),催化領(lǐng)域的每一次革新,都對(duì)我們的日常生活與經(jīng)濟(jì)發(fā)展帶來(lái)質(zhì)的飛躍,如高性能合成氨催化劑的重大突破不但解決了因人口的增長(zhǎng)導(dǎo)致人類(lèi)對(duì)糧食的需求問(wèn)題,還為一些理論基礎(chǔ)的研究奠定了基礎(chǔ)ADDINEN.CITE<EndNote><Cite><Author>劉化章</Author><Year>2001</Year><RecNum>327</RecNum><DisplayText><styleface="superscript">[5]</style></DisplayText><record><rec-number>327</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1582015914">327</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>劉化章</author></authors></contributors><auth-address>浙江工業(yè)大學(xué)催化研究所浙江省多相催化重點(diǎn)實(shí)驗(yàn)室!杭州310014</auth-address><titles><title>合成氨催化劑研究的新進(jìn)展</title><secondary-title>催化學(xué)報(bào)</secondary-title></titles><periodical><full-title>催化學(xué)報(bào)</full-title></periodical><pages>304-316</pages><number>03</number><keywords><keyword>合成氨</keyword><keyword>傳統(tǒng)熔鐵催化劑</keyword><keyword>Fe_(1-x)O基催化劑</keyword><keyword>釕基催化劑</keyword></keywords><dates><year>2001</year></dates><isbn>0253-9837</isbn><call-num>21-1195/O6</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[5];再如,一代又一代功能性Ziegler-Natta催化劑的問(wèn)世,使聚烯烴產(chǎn)品的合成踏上了快車(chē)道ADDINEN.CITE<EndNote><Cite><Author>張偉</Author><Year>2019</Year><RecNum>324</RecNum><DisplayText><styleface="superscript">[6]</style></DisplayText><record><rec-number>324</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1582015538">324</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>張偉</author></authors><tertiary-authors><author>馬建泰,</author></tertiary-authors></contributors><titles><title>氮摻雜介孔碳負(fù)載過(guò)渡金屬納米粒子催化劑的制備及其在加氫反應(yīng)中的應(yīng)用研究</title></titles><keywords><keyword>介孔碳</keyword><keyword>氮摻雜</keyword><keyword>過(guò)渡金屬</keyword><keyword>納米粒子</keyword><keyword>催化加氫</keyword></keywords><dates><year>2019</year></dates><publisher>蘭州大學(xué)</publisher><work-type>博士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[6]。因此,催化技術(shù)的創(chuàng)新、催化劑的改進(jìn)、新一代催化劑的開(kāi)發(fā)在人類(lèi)賴以生存的燃料和工業(yè)品生產(chǎn)中占有絕對(duì)的主導(dǎo)作用。根據(jù)反應(yīng)體系中催化劑所處狀態(tài)不同被分為單一催化劑和多相催化劑,單一催化劑與反應(yīng)物屬同一相(氣相或液相),具有催化效果好、避免不必要產(chǎn)物產(chǎn)生等特性,但存在催化劑難分離的缺陷;而多相催化劑和反應(yīng)物屬不同相,大多以固態(tài)形式參與反應(yīng),利用不同狀態(tài)的特性較好分離出產(chǎn)物與催化物,可以循環(huán)使用,在工業(yè)應(yīng)用中被稱(chēng)為“環(huán)境友好型催化劑”ADDINEN.CITE<EndNote><Cite><Author>周穎</Author><Year>2015</Year><RecNum>329</RecNum><DisplayText><styleface="superscript">[7]</style></DisplayText><record><rec-number>329</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1582788437">329</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>周穎</author><author>陳立宇</author><author>李映偉</author></authors></contributors><auth-address>華南理工大學(xué)化學(xué)與化工學(xué)院;</auth-address><titles><title>納米多相催化材料在常溫反應(yīng)中的應(yīng)用</title><secondary-title>化工進(jìn)展</secondary-title></titles><periodical><full-title>化工進(jìn)展</full-title></periodical><pages>3530-3539</pages><volume>34</volume><number>10</number><keywords><keyword>多相催化</keyword><keyword>納米材料</keyword><keyword>常溫反應(yīng)</keyword></keywords><dates><year>2015</year></dates><isbn>1000-6613</isbn><call-num>11-1954/TQ</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[7]。通常,活性組分和載體共同構(gòu)成非均相催化劑,其中活性組分是催化劑的核心,載體可視為穩(wěn)定催化劑、高效分散活性組分的“骨架”。在各行各業(yè)占據(jù)重要地位,尤其是碳基金屬催化劑,相對(duì)于硅球、氧化鋁等金屬基催化劑,由于其具有回收金屬簡(jiǎn)單、良好的導(dǎo)電-絕熱、可控的孔結(jié)構(gòu)等特性被認(rèn)為是最重要和最常用的催化劑之一ADDINEN.CITE<EndNote><Cite><RecNum>361</RecNum><DisplayText><styleface="superscript">[8,9]</style></DisplayText><record><rec-number>361</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584536762">361</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>GregoryG.Wildgoose,CraigE.Banks,andRichardG.Compton</author></authors></contributors><titles><title>MetalNanoparticlesandRelatedMaterialsSupportedonCarbonNanotubes:MethodsandApplications</title><secondary-title>small</secondary-title></titles><periodical><full-title>Small</full-title></periodical><pages><styleface="normal"font="default"size="100%">182</style><styleface="normal"font="default"charset="134"size="100%">-193</style></pages><volume>2</volume><number>2</number><dates><year>2006</year></dates><urls></urls><electronic-resource-num>10.1002/smll.200500324</electronic-resource-num></record></Cite><Cite><RecNum>360</RecNum><record><rec-number>360</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584536588">360</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>DanielR.DreyerandChristopherW.Bielawski</author></authors></contributors><titles><title>arbocatalysis:Heterogeneouscarbonsfindingutilityinsyntheticchemistry</title><secondary-title>ChemicalScience</secondary-title></titles><periodical><full-title>ChemicalScience</full-title><abbr-1>Chem.Sci</abbr-1></periodical><pages><styleface="normal"font="default"size="100%">1233</style><styleface="normal"font="default"charset="134"size="100%">-1240</style></pages><volume>2</volume><dates><year>2011</year></dates><urls></urls><electronic-resource-num>10.1039/C1SC00035G</electronic-resource-num></record></Cite></EndNote>[8,9]。活性炭負(fù)載金屬催化劑作為最普適的工業(yè)催化劑具有優(yōu)越的催化活性ADDINEN.CITE<EndNote><Cite><Author>Matos</Author><Year>2012</Year><RecNum>364</RecNum><DisplayText><styleface="superscript">[10]</style></DisplayText><record><rec-number>364</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584679827">364</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Matos,Inês</author><author>Neves,PauloDuarte</author><author>Castanheiro,JoséEduardo</author><author>Perez-Mayoral,Elena</author><author>Martin-Aranda,Rosa</author><author>Duran-Valle,Carlos</author><author>Vital,Joaquim</author><author>BotelhodoRego,AnaM.</author><author>Fonseca,IsabelM.</author></authors></contributors><titles><title>Mesoporouscarbonasanefficientcatalystforalcoholysisandaminolysisofepoxides</title><secondary-title>AppliedCatalysisA:General</secondary-title></titles><periodical><full-title>AppliedCatalysisA:General</full-title><abbr-1>Appl.Catal.,A</abbr-1></periodical><pages>24-30</pages><volume>439-440</volume><dates><year>2012</year></dates><isbn>0926860X</isbn><urls></urls><electronic-resource-num>10.1016/j.apcata.2012.06.036</electronic-resource-num></record></Cite></EndNote>[10]。但令人惋惜的是活性炭是微孔結(jié)構(gòu),會(huì)限制反應(yīng)物的擴(kuò)散和活性組分的錨定,致使金屬納米顆粒(NPs)分散不均勻,使用過(guò)程會(huì)發(fā)生聚集或流失現(xiàn)象,導(dǎo)致活性利用率降低。因此,能夠改變上述不足、擴(kuò)大應(yīng)用需求的非均相催化劑是人們迫切追尋的焦點(diǎn)。據(jù)研究可知,雜原子的引入為碳材料的開(kāi)發(fā)和改良開(kāi)辟了新的道路,雜原子的摻雜(如硼ADDINEN.CITE<EndNote><Cite><Author>Bhaumik</Author><Year>2017</Year><RecNum>363</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>363</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584679795">363</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Bhaumik,A.</author><author>Sachan,R.</author><author>Narayan,J.</author></authors></contributors><auth-address>DepartmentofMaterialsScienceandEngineering,CentennialCampus,NorthCarolinaStateUniversity,Raleigh,NorthCarolina27695-7907,UnitedStates. MaterialsScienceDivision,ArmyResearchOffice,ResearchTrianglePark,NorthCarolina27709,UnitedStates.</auth-address><titles><title>High-TemperatureSuperconductivityinBoron-DopedQ-Carbon</title><secondary-title>ACSNano</secondary-title></titles><periodical><full-title>ACSNano</full-title><abbr-1>ACSnano.</abbr-1></periodical><pages>5351-5357</pages><volume>11</volume><number>6</number><keywords><keyword>*Ramanspectroscopy</keyword><keyword>*electronenergylossspectroscopy</keyword><keyword>*quenchedcarbon</keyword><keyword>*secondaryionmassspectroscopy</keyword><keyword>*superconductivity</keyword></keywords><dates><year>2017</year><pub-dates><date>Jun27</date></pub-dates></dates><isbn>1936-086X(Electronic) 1936-0851(Linking)</isbn><accession-num>28448115</accession-num><urls><related-urls><url>/pubmed/28448115</url></related-urls></urls><electronic-resource-num>10.1021/acsnano.7b01294</electronic-resource-num></record></Cite></EndNote>[11]、氮ADDINEN.CITE<EndNote><Cite><Author>Qin</Author><Year>2019</Year><RecNum>303</RecNum><DisplayText><styleface="superscript">[12]</style></DisplayText><record><rec-number>303</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1578574596">303</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Qin,Qing</author><author>Jang,Haeseong</author><author>Li,Ping</author><author>Yuan,Bing</author><author>Liu,Xien</author><author>Cho,Jaephil</author></authors></contributors><titles><title>ATannicAcid-DerivedN-,P-CodopedCarbon-SupportedIron-BasedNanocompositeasanAdvancedTrifunctionalElectrocatalystfortheOverallWaterSplittingCellsandZinc-AirBatteries</title><secondary-title>AdvancedEnergyMaterials</secondary-title></titles><periodical><full-title>AdvancedEnergyMaterials</full-title><abbr-1>Adv.EnergyMater.</abbr-1></periodical><pages>1803312</pages><volume>9</volume><number>5</number><dates><year>2019</year></dates><isbn>16146832</isbn><urls></urls><electronic-resource-num>10.1002/aenm.201803312</electronic-resource-num></record></Cite></EndNote>[12]、磷ADDINEN.CITE<EndNote><Cite><Author>Gao</Author><Year>2018</Year><RecNum>366</RecNum><DisplayText><styleface="superscript">[13]</style></DisplayText><record><rec-number>366</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584929487">366</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gao,Ruijie</author><author>Pan,Lun</author><author>Wang,Huiwen</author><author>Zhang,Xiangwen</author><author>Wang,Li</author><author>Zou,Ji-Jun</author></authors></contributors><titles><title>UltradispersedNickelPhosphideonPhosphorus-DopedCarbonwithTailoredd-BandCenterforEfficientandChemoselectiveHydrogenationofNitroarenes</title><secondary-title>ACSCatalysis</secondary-title></titles><periodical><full-title>ACSCatalysis</full-title><abbr-1>ACSCatal.</abbr-1></periodical><pages>8420-8429</pages><volume>8</volume><number>9</number><dates><year>2018</year></dates><isbn>2155-5435 2155-5435</isbn><urls></urls><electronic-resource-num>10.1021/acscatal.8b02091</electronic-resource-num></record></Cite></EndNote>[13]、硫ADDINEN.CITE<EndNote><Cite><Author>Chang</Author><Year>2015</Year><RecNum>365</RecNum><DisplayText><styleface="superscript">[14]</style></DisplayText><record><rec-number>365</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584929434">365</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chang,Yuanqin</author><author>Hong,Fei</author><author>Liu,Jinxin</author><author>Xie,Minsui</author><author>Zhang,Qianling</author><author>He,Chuanxin</author><author>Niu,Hanben</author><author>Liu,Jianhong</author></authors></contributors><titles><title>Nitrogen/sulfurdual-dopedmesoporouscarbonwithcontrollablemorphologyasacatalystsupportforthemethanoloxidationreaction</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title><abbr-1>Carbon</abbr-1></periodical><pages>424-433</pages><volume>87</volume><dates><year>2015</year></dates><isbn>00086223</isbn><urls></urls><electronic-resource-num>10.1016/j.carbon.2015.02.063</electronic-resource-num></record></Cite></EndNote>[14])可調(diào)控碳材料的微觀結(jié)構(gòu)、形貌和電子特性,增強(qiáng)親水性,調(diào)節(jié)材料表面的酸堿性,從而擴(kuò)大應(yīng)用市場(chǎng);同時(shí),雜原子可改善金屬-載體電子作用,進(jìn)而增加錨定位點(diǎn)的數(shù)量來(lái)穩(wěn)固分散金屬NPs。尤其是研究熱度很高的氮摻雜多孔碳材料,無(wú)論是作為一種綠色催化劑還是催化劑載體均表現(xiàn)出優(yōu)異的性能,這一研究成果促使研究者們不斷擴(kuò)大摻雜譜。迄今為止,碳基納米材料(包括多孔碳、氮摻雜碳和氮摻雜碳負(fù)載金屬/金屬氧化物復(fù)合材料)已廣泛應(yīng)用于能源和環(huán)境領(lǐng)域,如電池、超級(jí)電容器以及光電催化,氮摻雜多孔碳材料可實(shí)現(xiàn)對(duì)其物理/化學(xué)性質(zhì)的人工裁剪。因此,開(kāi)發(fā)一種先進(jìn)的、多功能性非金屬摻雜碳材料負(fù)載超細(xì)金屬納米催化劑具有很大的催化應(yīng)用前景。1.2負(fù)載型金屬納米催化劑隨著催化技術(shù)的發(fā)展和人們對(duì)綠色氫能源的密切關(guān)注,具有“第四代催化劑”稱(chēng)號(hào)的負(fù)載型納米催化劑,因獨(dú)特的量子尺寸效應(yīng)、宏觀量子隧道效應(yīng)、小尺寸效應(yīng)以及金屬-載體之間相互作用(SMSI)成為非均相催化領(lǐng)域的研究主流。負(fù)載型金屬納米催化劑一般是將粒徑為1-100nm的金屬活性組分高效分散在載體上,使金屬利用效率最大化。通過(guò)先前學(xué)者研究,我們已經(jīng)熟知負(fù)載型金屬催化劑相較于金屬有機(jī)配合物均相催化劑和傳統(tǒng)的無(wú)機(jī)多相催化劑在工業(yè)應(yīng)用中具有一定的優(yōu)點(diǎn),如:比表面積大、活性高、選擇性強(qiáng)、不易腐蝕易于回收,可再循環(huán)使用。一般,催化劑的轉(zhuǎn)化率、選擇性和穩(wěn)定性是一個(gè)優(yōu)秀催化劑的評(píng)判標(biāo)準(zhǔn),而催化劑的活性與穩(wěn)定性跟催化劑的結(jié)構(gòu)性能有關(guān)聯(lián),例如:活性組分的尺寸大小、晶型、晶面,載體的種類(lèi)、微觀結(jié)構(gòu)、形貌和孔道以及金屬-載體之間的作用都會(huì)調(diào)控和改善催化劑的催化性能ADDINEN.CITEADDINEN.CITE.DATA[15]。1.2.1負(fù)載型金屬納米催化劑的類(lèi)型負(fù)載型金屬催化劑的種類(lèi)繁多,按照活性組分的不同大致分為以下三種。負(fù)載型貴金屬納米催化劑負(fù)載型貴金屬納米催化劑是以Pt、Pd、Rh、Ru等金屬活性組分高效分散在載體上的多相催化劑,其Pd和Pt為最典型代表,在許多催化反應(yīng)中都具有活性,有潛在的工業(yè)價(jià)值和環(huán)保價(jià)值,受到了眾多研究者的青睞。通過(guò)對(duì)Pd基負(fù)載型催化劑的研究,發(fā)現(xiàn)貴金屬Pd的d能帶軌道未能被填滿,能夠有效活化H2和O2,具有較強(qiáng)的吸附性能,可以吸附反應(yīng)底物,有助于中間活性物的生成,被廣泛應(yīng)用于加氫/脫氫、有機(jī)合成、燃料電池等領(lǐng)域。如Kim等研究者ADDINEN.CITE<EndNote><Cite><Author>Kim</Author><Year>2013</Year><RecNum>368</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>368</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1584949992">368</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kim,SeokKi</author><author>Kim,Cheonghee</author><author>Lee,JiHoon</author><author>Kim,Jaeyoung</author><author>Lee,Hyunjoo</author><author>Moon,SangHeup</author></authors></contributors><titles><title>Performanceofshape-controlledPdnanoparticlesintheselectivehydrogenationofacetylene</title><secondary-title>JournalofCatalysis</secondary-title></titles><periodical><full-title>JournalofCatalysis</full-title><abbr-1>J.Catal.</abbr-1></periodical><pages>146-154</pages><volume>306</volume><dates><year>2013</year></dates><isbn>00219517</isbn><urls></urls><electronic-resource-num>10.1016/j.jcat.2013.06.018</electronic-resource-num></record></Cite></EndNote>[16]采用等體積浸漬吸附法制備了Pd/Al2O3催化劑并應(yīng)用在乙炔選擇性加氫中,結(jié)果表明決定Pd納米催化劑催化性能的關(guān)鍵所在是表面結(jié)構(gòu),如Pd納米顆粒的凹陷、邊緣、轉(zhuǎn)角、空隙不同,都會(huì)導(dǎo)致其具有不同的催化活性。再如,王戈教授ADDINEN.CITE<EndNote><Cite><Author>Li</Author><Year>2015</Year><RecNum>376</RecNum><DisplayText><styleface="superscript">[17]</style></DisplayText><record><rec-number>376</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1585138791">376</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Li,J.</author><author>Tan,L.</author><author>Wang,G.</author><author>Yang,M.</author></authors></contributors><auth-address>SchoolofMaterialsScienceandEngineering,UniversityofScienceandTechnologyBeijing,Beijing100083,People'sRepublicofChina.</auth-address><titles><title>Synthesisofdouble-shelledseaurchin-likeyolk-shellFe3O4/TiO2/Aumicrospheresandtheircatalyticapplications</title><secondary-title>Nanotechnology</secondary-title></titles><periodical><full-title>Nanotechnology</full-title></periodical><pages>095601</pages><volume>26</volume><number>9</number><keywords><keyword>Catalysis</keyword><keyword>Gold/chemistry</keyword><keyword>MagnetiteNanoparticles/*chemistry/ultrastructure</keyword><keyword>*Microspheres</keyword><keyword>Titanium/chemistry</keyword></keywords><dates><year>2015</year><pub-dates><date>Mar6</date></pub-dates></dates><isbn>1361-6528(Electronic) 0957-4484(Linking)</isbn><accession-num>25665732</accession-num><urls><related-urls><url>/pubmed/25665732</url></related-urls></urls><electronic-resource-num>10.1088/0957-4484/26/9/095601</electronic-resource-num></record></Cite></EndNote>[17]通過(guò)構(gòu)筑含有磁核的海膽狀多級(jí)結(jié)構(gòu)并負(fù)載貴金屬納米粒子,成功提升了貴金屬粒子的分散性并賦予了其磁性回收功能,將多種功能構(gòu)筑于一個(gè)多級(jí)結(jié)構(gòu)上,啟發(fā)了人們對(duì)催化材料設(shè)計(jì)制備的再認(rèn)識(shí)。直到近年來(lái),負(fù)載型單原子催化劑的誕生,使原子利用率在理論上方可達(dá)到100%,為開(kāi)發(fā)低成本、高性能的負(fù)載型貴金屬催化劑提供了新的平臺(tái)ADDINEN.CITE<EndNote><Cite><Author>張濤</Author><Year>2016</Year><RecNum>330</RecNum><DisplayText><styleface="superscript">[18]</style></DisplayText><record><rec-number>330</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1583293578">330</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>張濤</author></authors></contributors><auth-address>中國(guó)科學(xué)院大連化學(xué)物理研究所,2011能源材料化學(xué)協(xié)同創(chuàng)新中心;</auth-address><titles><title>單原子鈀催化劑的光化學(xué)合成新策略</title><secondary-title>物理化學(xué)學(xué)報(bào)</secondary-title></titles><periodical><full-title>物理化學(xué)學(xué)報(bào)</full-title></periodical><pages>1551-1552</pages><volume>32</volume><number>07</number><keywords><keyword>鈀催化劑</keyword><keyword>策略</keyword><keyword>多相催化</keyword><keyword>單原子</keyword><keyword>金屬負(fù)載量</keyword><keyword>光化學(xué)合成</keyword></keywords><dates><year>2016</year></dates><isbn>1000-6818</isbn><call-num>11-1892/O6</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[18]。負(fù)載型過(guò)渡金屬納米催化劑 隨著催化技術(shù)的迅速發(fā)展,含量豐富的過(guò)渡金屬催化劑受到了推廣和多元化應(yīng)用。通常,非貴金屬能夠改變化學(xué)價(jià)態(tài)和配位數(shù),其歸因于過(guò)渡金屬d軌道電子容易得失,不僅能形成電子σ-π,還能與不飽和鍵配位絡(luò)合,即是電子的受體,又可充當(dāng)供體。當(dāng)前,負(fù)載型金屬化合物催化劑和雜原子摻雜金屬型催化劑是負(fù)載型過(guò)渡金屬催化領(lǐng)域的熱點(diǎn)課題。如本實(shí)驗(yàn)室通過(guò)可再生生物質(zhì)蔗糖、低成本的三聚氰胺和Co(AcO)2作為前體材料成功地制備了嵌入鈷納米顆粒的氮摻雜碳催化劑(Co@NC),在芳香硝基化合物的氫轉(zhuǎn)移反應(yīng)中表現(xiàn)出良好的選擇性和穩(wěn)定性ADDINEN.CITE<EndNote><Cite><Author>Yuan</Author><Year>2018</Year><RecNum>332</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>332</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1583305000">332</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yuan,M.</author><author>Long,Y.</author><author>Yang,J.</author><author>Hu,X.</author><author>Xu,D.</author><author>Zhu,Y.</author><author>Dong,Z.</author></authors></contributors><auth-address>CollegeofChemistryandChemicalEngineering,GansuProvincialEngineeringLaboratoryforChemicalCatalysis,LaboratoryofSpecialFunctionMaterialsandStructureDesignoftheMinistryofEducation,LanzhouUniversity,Lanzhou,730000,P.R.China.</auth-address><titles><title>BiomassSucrose-DerivedCobalt@Nitrogen-DopedCarbonforCatalyticTransferHydrogenationofNitroareneswithFormicAcid</title><secondary-title>ChemSusChem</secondary-title></titles><periodical><full-title>ChemSusChem</full-title></periodical><pages>4156-4165</pages><volume>11</volume><number>23</number><keywords><keyword>carbon</keyword><keyword>cobalt</keyword><keyword>heterogeneouscatalysis</keyword><keyword>hydrogenation</keyword><keyword>nanoparticles</keyword></keywords><dates><year>2018</year><pub-dates><date>Dec11</date></pub-dates></dates><isbn>1864-564X(Electronic) 1864-5631(Linking)</isbn><accession-num>30240135</accession-num><urls><related-urls><url>/pubmed/30240135</url></related-urls></urls><electronic-resource-num>10.1002/cssc.201802163</electronic-resource-num></record></Cite></EndNote>[19]。負(fù)載型雙金屬納米催化劑雙金屬(合金)納米催化劑指由兩種或兩種以上的金屬活性組分堆積而成的無(wú)定形納米粒子,具備不同于單一金屬的電子結(jié)構(gòu)和化學(xué)性質(zhì),在一定的催化反應(yīng)中具有相對(duì)優(yōu)于單一金屬催化劑的催化活性。至今,人們?yōu)榱颂岣咧黧w活性組分的活性,引入客體金屬進(jìn)而構(gòu)成雙金屬催化劑,利用金屬-金屬協(xié)同作用而優(yōu)化催化性能。在許多催化及電催化反應(yīng)中獲得顯著的成果。1.2.2負(fù)載型貴金屬納米催化劑的制備催化劑的結(jié)構(gòu)性能如活性、選擇性和穩(wěn)定性等隨著合成工藝的不同而發(fā)生巨大改變。為了能夠達(dá)到理想狀態(tài)的催化性能,需要不斷優(yōu)化合成工藝,開(kāi)發(fā)精細(xì)可控的合成技術(shù),調(diào)控金屬活性組分的尺寸大小、幾何構(gòu)型、配位環(huán)境和選擇最佳的載體來(lái)增強(qiáng)金屬-載體相互作用,進(jìn)而制備出高性能、低耗能的催化劑。當(dāng)前,合成工藝大體上為不可控制備法(浸漬法、沉淀-沉積法、離子交換法、雙溶劑法)和可控制備方法(共沉淀法、置換法、強(qiáng)靜電吸附法和表面還原法),而可控制備法多數(shù)用于合成雙金屬催化劑,本文不進(jìn)行詳細(xì)論述。浸漬法浸漬法為常見(jiàn)的不可控制備法之一。一般將催化劑載體分散到含有活性組分的鹽溶液中,活性組分離子利用金屬-載體間的范德華力、靜電吸引力和載體的表面張力吸附在載體表面或孔道當(dāng)中,達(dá)到吸附飽和后,經(jīng)過(guò)離心洗滌干燥、煅燒、活化、還原等程序獲得負(fù)載型貴金屬催化劑。此方法制備的催化劑雖然擔(dān)載量較低,但利用率高,簡(jiǎn)單易操作,制備過(guò)程幾乎不會(huì)引起活性組分的流失等問(wèn)題,因而廣泛應(yīng)用在負(fù)載型貴金屬催化劑制備中。如Chen等人ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2019</Year><RecNum>333</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>333</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1583411360">333</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,F.</author><author>Shen,K.</author><author>Chen,J.</author><author>Yang,X.</author><author>Cui,J.</author><author>Li,Y.</author></authors></contributors><auth-address>StateKeyLaboratoryofPulpandPaperEngineering,SchoolofChemistryandChemicalEngineeringandAnalyticalandTestingCentre,SouthChinaUniversityofTechnology,Guangzhou510640,China.</auth-address><titles><title>GeneralImmobilizationofUltrafineAlloyedNanoparticleswithinMetal-OrganicFrameworkswithHighLoadingsforAdvancedSynergeticCatalysis</title><secondary-title>ACSCentralScience</secondary-title></titles><periodical><full-title>ACSCentralScience</full-title></periodical><pages>176-185</pages><volume>5</volume><number>1</number><dates><year>2019</year><pub-dates><date>Jan23</date></pub-dates></dates><isbn>2374-7943(Print) 2374-7943(Linking)</isbn><accession-num>30693336</accession-num><urls><related-urls><url><styleface="underline"font="default"size="100%">/pubmed/30693336</style></url></related-urls></urls><custom2>PMC6346383</custom2><electronic-resource-num>10.1021/acscentsci.8b00805</electronic-resource-num></record></Cite></EndNote>[20]首次通過(guò)浸漬法將Cu負(fù)載在MIL-101載體上獲得Cu/MIL-101,然后再利用過(guò)渡金屬和貴金屬之間的相對(duì)還原電勢(shì)的差異成功制備了高負(fù)載量(>8wt%)的Cu?Pd@MIL-101合金催化劑,如圖1-1,并在在苯乙炔自偶聯(lián)反應(yīng)中展現(xiàn)出優(yōu)異的協(xié)同催化性能。該項(xiàng)工作在設(shè)計(jì)MOFs封裝均一的合金納米粒子中,平衡了載量和粒徑等多方面的因素,為發(fā)展用于高效協(xié)同催化的金屬納米催化劑提供了新的思路。圖1-1在MIL-101中錨定Cu-Pd合金的示意圖。(A)Cu?Pd@MIL-101的合成路線,(B)超聲輔助法用于制備Cu-Pd@MIL-101,圖片來(lái)源于參考文獻(xiàn)ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2019</Year><RecNum>333</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>333</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1583411360">333</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,F.</author><author>Shen,K.</author><author>Chen,J.</author><author>Yang,X.</author><author>Cui,J.</author><author>Li,Y.</author></authors></contributors><auth-address>StateKeyLaboratoryofPulpandPaperEngineering,SchoolofChemistryandChemicalEngineeringandAnalyticalandTestingCentre,SouthChinaUniversityofTechnology,Guangzhou510640,China.</auth-address><titles><title>GeneralImmobilizationofUltrafineAlloyedNanoparticleswithinMetal-OrganicFrameworkswithHighLoadingsforAdvancedSynergeticCatalysis</title><secondary-title>ACSCentralScience</secondary-title></titles><periodical><full-title>ACSCentralScience</full-title></periodical><pages>176-185</pages><volume>5</volume><number>1</number><dates><year>2019</year><pub-dates><date>Jan23</date></pub-dates></dates><isbn>2374-7943(Print) 2374-7943(Linking)</isbn><accession-num>30693336</accession-num><urls><related-urls><url><styleface="underline"font="default"size="100%">/pubmed/30693336</style></url></related-urls></urls><custom2>PMC6346383</custom2><electronic-resource-num>10.1021/acscentsci.8b00805</electronic-resource-num></record></Cite></EndNote>[20]。雙溶劑法徐強(qiáng)教授等人首次研發(fā)出一種將金屬納米顆粒錨定在金屬有機(jī)骨架(MOFs)中的新方法,即雙溶劑法(DSM),根據(jù)載體(MOFs為主)表面和孔道的親疏水性不同利用毛細(xì)作用將金屬納米顆粒錨定在MOFs內(nèi)腔中,這種方法制備的催化劑粒徑分布更窄、活性組分不易于流失和聚集,可實(shí)現(xiàn)擇形催化。Qi-LongZhu等人ADDINEN.CITEADDINEN.CITE.DATA[21]將金屬前驅(qū)體水溶液緩慢滴入載體MlL-101正己烷溶液當(dāng)中,由于MlL-101表面的親水性使金屬前驅(qū)體水溶液進(jìn)入孔道內(nèi),再通過(guò)NaBH4水溶液還原得到AuNi@MIL-101合金催化劑,此方法將為氨硼烷開(kāi)發(fā)成一種實(shí)用的清潔能源儲(chǔ)氫材料提供了一種高性能的催化劑。李映偉教授團(tuán)隊(duì)ADDINEN.CITE<EndNote><Cite><RecNum>337</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>337</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92"timestamp="1583466379">337</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>KuiShen,LeiZhang,XiaodongChen,LingmeiLiu,DaliangZhang,YuHan,JunyingChen,JilanLong,RafaelLuque,YingweiLi,BanglinChen</author></authors></contributors><titles><title>Orderedmacro-microporousmetalorganicframeworksinglecrystals</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title><abbr-1>Science</abbr-1></periodical><pages>206-210</pages><volume>359</volume><number>6372</number><dates><year>2018</year></dates><urls></urls><electronic-resource-num>10.1126/science.aao3403</electronic-resource-num></record></Cite></EndNote>[22]采用“雙溶劑”法,通過(guò)“硬模板劑的制備—在大孔內(nèi)填充MOF前驅(qū)體—MOF的可控晶化—去除模板劑”的制備路線,具體步驟如圖1-2,研制出世界首個(gè)有序大孔—微孔MOF單晶材料(SOM-ZIF-8)。研究發(fā)現(xiàn)SOM-ZIF-8在苯甲醛和乙二腈的Knoevenagel縮合反應(yīng)中的催化活性是常規(guī)微孔ZIF-8的4倍以上,而且隨著反應(yīng)物分子尺寸的增大,其活性提升倍數(shù)增高。圖1-2SOM-ZIF-8的合成路線,圖片來(lái)源于參考文獻(xiàn)ADDINEN.CITE<EndNote><Cite><RecNum>337</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>337</rec-number><foreign-keys><keyapp="EN"db-id="vrvppt552p2w9wezxrjvprt3050vs5t9wx92

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論