版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
CONFIDENCE
INAI
APlaybookbyCapgeminiGenerativeAILab
2024
SUCCESSFUL,CONFIDENT
ADOPTIONOFAIRELIES
NOTJUSTONCREATING
AITHATWORKS,BUTON
CREATINGAITHATWORKS
RELIABLY,AITHAT’S
ALIGNEDTOHUMAN
EXPECTATIONS,ANDAI
THATWORKSINPEOPLE’S
BESTINTERESTS.
2GenAILab2024
3
TABLEOF
CONTENTS
4GenAILab2024
AITHATWORKS
ProvenAccuracy08
AITHATWORKSRELIABLY
Robustness
10
Dependability
12
Stability
14
AITHAT’SALIGNEDTOHUMANEXPECTATIONS
Sensibility
16
Humility
18
FailsGracefully/ExtrapolatesSensibly
20
Explainability
22
AITHATWORKSINPEOPLE’SBESTINTERESTS
Fairness24
Sustainability26
Privacy28
MARKROBERTS
DeputyHeadGenerativeAILab
Editorinchief
ROBERTENGELS
HeadGenerativeAILab
Editorinchief
AI:Beinggoodwastheeasybit.Nowweneedtobeuseful
Artificialintelligence(AI)issuddenlyeverywhere.Powerfulcontent-generationservicesthatmighthavebeenviewedasbeingfromtherealmofsciencefictionjust12monthsagoarenowabigpartofconversationfromtheboardroomtotheschoolplayground.
Onehugefactorinthisupswingininterestistheriseof
GenerativeAI.Duringthepast12months,theemergenceofhigh-profileGenerativeAIserviceshaspushedAItothefrontpages.WhereAIwasonceperceivedasanicheareaoftechnology,it’snowbeingusedbyallkindsofpeopleforallkindsofuses,whetherit’saskingquestions,writingtext,orgeneratingphotosandcode.
However,don’tconfusetherapidriseofGenerativeAIwitharevolution.WhileaneffectiveuserinterfacelikeChatGPTdemocratizesaccesstopowerfullargelanguagemodels,
themovetowardsAI-poweredserviceswashappening
anyway.Today’sinterestinGenerativeAIissimplythevisiblemanifestationofabehind-the-scenesevolutionthat’sbeenmanyyearsinthemaking.
What’smore,thosedecadesofexperiencegiveusa
proveninsightintothecriticalsuccessfactorsthatmustbeconsideredifwearetoturnaninterestinall-thingsAIintosomethingthathasgenuinecommercialvalue.
Understandingthe
scaleofinvestment
Aswellasthehigh-profilegenerativeservicesthatdominatethenewsagenda,there’sdiversearrayofotherAIproductsandservicesthatarebeingannounced,launchedand
marketedeveryday.ResearcherIDCreportsthatglobal
spendingonAI,includingsoftware,hardware,andservices,will
reach$154billionin2023
,anincreaseof26.9%ontheamountspentduring2022.
ThetechanalystsaysthecontinuedinvestmentinAIwill
meanspendingsurpasses$300billionin2026.Thiscashisalreadyfundingabroadrangeofproof-of-conceptprojects.Whetherthey’reusingAItoimprovecustomerservices,
solvehardscienceandengineeringproblemsoridentifyfraudulenttransactions,companiesareinvestingbillionsofdollarsinrelativelynewtechnologytotryandgain
competitiveadvantageovertheirrivals.
Fromtheoutsidelookingin,thisinvestmentinAIlooks
likeagreatsuccessstory.Thefundingwillcreateproducts
andservicesthathelpshapethefutureoftechnology
andbusiness.Yetthere’sadownside,too–likeallnew
technologywaves,notalloftheseinvestmentswillpayoff.WeseethiseffectacrossCapgemini’sbroadcustomerbase.ManyAIprojects,evenonesthatareapparentlysuccessful,
donotescapetheproof-of-conceptstages.VarioussurveysinrecentyearsputthefailurerateofAIprojectsashighas80%.Whatemergesisacontradiction:whilemanyorganizationsbelieveabiginvestmentinAIwillbecommerciallypositive,largenumbersoftheseprojectsarenotnecessarilypayingoff.So,howcanwereconcilethesetwoverydifferentviewsandcreatecommerciallyusefulAIinitiatives?
5
Changinghowwe
measuresuccess
Thekeychallengeweneedtoovercomeisthatwe’re
allmeasuringthesuccessofAIprojectsinthewrong
way.Whetherit’speoplewhoareusingAI,specialists
developingtools,orthemedia,analystsandinvestors,
we’realllockedintoacollectivedelusionthataccuracyistheonlythingthatmatters.
Successistoooftenmeasuredintermsofhavinghigh
accuracyonnarrowbenchmarktests,orbeingimpressiveorentertaining,whileothercrucialsuccessfactors–areignoredbecausethey’renotwell-understood,excitingorheadline-grabbing.
WhenanAIsystemdoessomethingcorrectly,whether
that’sasimpleclassificationperformedbyatraditional
machine-learningsystem,oraGenerativeAItoolansweringaquestioncorrectly,weattachalotofsignificancetothisaccuracy.Infact,weoftenbaseourentireopinionofthe
systemonthissinglemeasureofaccuracy.
Accuracyissoreveredthateverydayweseebreathlessheadlinesdeclaringthatnewsystemshaveachieved
highlevelsofaccuracyonaparticularproblem.Figuresof“90%accurate”or99%or99.9%arethrownaround–
themore9sthebetter,suchistheobsessionwithhigh
levelsofaccuracy.Toexpertsinthefield,however,this
obsessionwithaccuracyisbothna?veandunhelpful,
asitdrawsattentionawayfromthefactorsthatreally
matterforlong-termsuccess.Inthemajorityofreal-
worlddeployments,howbadlyandAIsystemfailsisfar
moreimportantthathowoftenitsucceeds.Inreality,
anAIsystemthat’s99.99%accuratecouldbedeemeda
completefailureifthe0.001%offailuresarecatastrophic.
Accuracyisnottheonlyimportantfactor–andit’s
certainlynotthemaincauseofmostAIprojectfailures.ThecommercialsuccessofanAIprojectisdependentonacomplexcombinationoffactors,whicharetoooftenignoredorrelegatedtosecondaryconcerns.
However,thesesupposedlysecondaryconcernsare
actuallycriticaltosuccess.Thesefactorsarejustas
importantasaccuracy,maybemoreso,becausetheyareoftentherootcausebehindproblematicbehaviorandfailedAIinvestments.Thesesuccessfactors,whichareoutlinedhere,mustbeconsideredduringthe
developmentandimplementationofanyAIsystemastheywillinstillconfidenceamongthesystem’susersandintheleadersthataredrivingandpayingforit:
AIThatWorks
?ProvenAccuracy–Isgoodatsolvingtheproblem,asmeasuredbybenchmarktests.
AIThatWorksReliably
?Robustness–Handlesunusualormaliciousoutputseffectively.
?Dependability–Alwaysproducesanoutputwithintherequiredtimeframe.
?Stability–Performanceisconsistentanddoesnotdriftovertime.
AIThat’sAlignedtoHumanExpectations
?Sensibility–Makesdecisionsinlinewithhowtheworldorsocietyworks.
?Humility–Understandsitsownlimitations,andrefusestoanswerquestionswhereitdoesn’tknowtheanswer.
?Extrapolatessensibly/Failsgracefully–Actssensiblywhenconfrontedwithscenariosbeyondthoseinwhichitwastrainedandfailssafely.
?Explainability–Canjustifyhowitsolvedtheproblemratherthanworkingasamysteriousblackbox.
AIThatWorksinPeople’sBestInterests
?Fairness–Non-biased.Isequallyfairtoallsub-groups.
?Sustainability–Minimizesharmfulimpactsfromtrainingandongoinguse.
?Privacy–Protectsthesensitivedatathatitwastrainedon.
Conclusion:MakingAIusefulforeveryone
Weseenowthatactuallysolvingataskaccuratelyisjustoneof12equallyimportantfactorsthathelpeveryonetofeel
muchmoreconfidentabouttheAIproductsandservicestheyuse.
Weshouldn’tmakethemistakeofthinkingelements
likehumility,sustainabilityandreliabilityaretheboring
secondaryelementsofanAIendeavor.Whilefocusingonthesefactorswon’tcreatetheexcitementthatcomesfromanAI-generatedimageoressay,itwillensuretheoutputsyourbusinesscreatesaretrustedanduseful.Andonce
thathappens,overtime,thechancesoffailurewillreduce,thelevelsofadoptionwillincrease,andthelikelihoodofcommercialsuccesswillberaisedsignificantly.
AsAIplaysanever-increasinglyimportantroleinourlives,
peoplemustfeelconfidentinthesolutionstheyuse.
Ensuringthese12factorsarealwaysconsideredwillmeanyourbusinessdeliverssignificantcommercialvaluefromAI.Inthisplaybook,wewilldiscusseachofthese12factorsinmoredetail.
6GenAILab2024
Thingspeoplenormally
focusoninAI
Refusingtoanswer,oratleastreportingwhenitdoesn’tknowsomething
ExtrapolatesSensibly
willdosomethingsensible
whenconfrontedwithunseen
databeyondtheboundsof
whatitwastrainedon
Robustness
Willhandle
unusualormalicious
inputswell
Privacy
willnotleak
sensitivedataitwas
trainedon
ProvenAccuracy
Isitgoodatsolvingtheproblem,asmeasuredbytests?
FailsGracefully
Ifitfails,willitfailinasafe&sensibleway?
Sustainability
Impactoftraining
andongoinguseis
notharmful
Explainability
Canitexplain/justify
howitsolvedtheproblem?
-AIthatworks
CONFIDENCE/
TRUSTINAN
AISOLUTION
Thingswenow
recognizearecrucialtomakeAIsuccessful
Stability
performancewill
notunknowinglydrift
overtime
Sensibility
Makesdecisionsinlinewithhowtheworld/nature/physics/cultureworks
Dependability
Willalwaysproduce
anoutput,inthe
requiredtimeframe
Humility
Fairness
Outputisnotbiased
againstanysub-groups
AIthat’salignedwithhumanexpectations
AIthatworksreliably
AIthatworksinpeople’s
bestinterests
7
TIJANANIKOLI?
EXPERTINRESIDENCE
PROVEN
in
ACCURACY
WhendowegettosaythatAIisgoodenough?Whatdoes“good”evenmean?
tobasedecisionsonasthedifferentaccuracymeasuresweusecandramaticallyinfluencehowweinterprettheiroutputs.
Itisimperativetoalsoconsiderreal-worlddimensions.Amodel
mightperformexceptionallyintestsbutfailprofoundlywhen
appliedtoreal-worldscenarios.Thisdiscrepancyhighlightsthe
importanceofacomprehensivedefinitionofgoodness—onethatincorporatesvariousfacetssuchasethicalimplications,social
impact,andalignmentwithhumanvalues.
GenerativeAIhasthrustAIintothespotlightinsectorsfrom
creativeartstodataanalysis,andcustomerservicetoengineering.
However,thisrapidrisehasbroughttoprominencealong-standing
questioninAI:WhatdoesitmeanforAItobe“good”?Traditionally,
theperformanceofmachinelearningmodelshasbeenassessed
onlythroughnarrowmeasuresoftestandvalidationscores.
However,thenewfocusonGenerativeAIwithitscreativityand
hallucinationshasforcedustoreconsiderwhataccuracyreally
meansorwhetheraccuracyisevenrelevantinthisnewworld.
Simplisticmeasuresofaccuracyarenolongergoodenoughforus
8GenAILab2024
WHY?
?AnyonewhoisinvolvedindecisionmakingaroundAIneedstounderstanditsperformance.Thisistruebothofthe
usersofasystem,andofthepeopledesigning,buildingandfundingit.
?Thisneedtounderstandperformancemakesithighlydesirabletocreateasingle,easilydigestiblenumber–accuracy,whichrepresentsthatperformanceprofile.
?However,inalmostallcases,nosinglenumbercantell
youthewholestoryofhowamachinelearningsystem
performs,soweneedoftenneedtousemultiplemetricstodescribetheperformanceprofile.
?Evenifwecouldcapturethehow“good”amodelisinasinglenumber,thatisnotenoughas“good”isasubjectiveterm.
?UnderstandingthemultifacetedessenceofwhatsuccessinAIlookslikeispivotalduetothepotentialconsequencesoffocusingtoomuchonanyonefacet.
?Insomecases,focusingonthewrongtypeofaccuracycancausereal-worldharm.Forexample,astudyof
breast-cancerscreeningintheUKshowedthatana?ve
focusonthewrongsortofaccuracyledtoover-diagnosesandmanywomenunnecessarilyundergoingpainfulandstressfultreatments.
WHAT?
?ConsiderasimplemeasureofaccuracyforanAI
computervisionsystemclassifying100objects,eitherapplesororanges.Wecouldcalculatetheaccuracy
ofthatsystembyjustmeasuringthepercentageofclassificationsthatarecorrect.
?However,thispercentagewouldonlybeausefulmeasureiftherewereexactlythesamenumberofitemsin
bothclasses.If,howeverthereweremoreapplesthan
oranges,asimplepercentageaccuracyfigurewouldnotaccuratelyreflecttheperformanceoftheclassifier.Inanextremecase,iftherewere99applesandoneorange,
andtheclassifieralwayssaid“apple”it’sna?veaccuracy
wouldbe99%,eventhoughithadnoabilitytodetectthedifferencebetweentheclasses.
?Forthisreason,morecomplexstatisticalmeasuresare
used,oftensuchasprecision&recall,orsensitivity&
specificity.Thesemeasuresdescribedifferentfacetsof
accuracy,showinghowwellitperformsinbothitspositiveandnegativepredictions,repeatablyovermultipleuses.
?However,evenusingthesemoresophisticatedmeasuressuchasaccuracy,precisionandrecalldoesnotmeanyourmodel’sreal-worldsuccessisguaranteed.
?Infact,aswewillshowinthisPlaybook,accuracyon
benchmarktestsisonlyoneofmanyequallyimportant
facetsofsuccessthatmustbeconsideredinordertonotjustbesuccessfulonpaper,buttohavegenuinereal-worldsuccesswithuserswhoareconfidentinthatsystem.
RECOMMENDATIONS
?First,ensureyouaremeasuringandcommunicating
accuracyeffectively.Itisextremelyunlikelythataccuracycanberepresentedbyasinglenumber,sousemore
appropriatemeasurestosetusers’expectationsabouttheperformanceprofileofasystem.
?Don’tusesimplisticmeasuresofaccuracyasthesolecriteriafordeclaringsuccessinanAIsystem.
?EducateeveryoneinthebusinessabouthowtotalkaboutaccuracyinAIsystems.Striveforaculturewhereeveryone,rightuptotheboardroom,iscomfortableaskingquestionsaboutsensitivityandspecificity,precisionandrecalletc.
?Beyondaccuracy,aholisticapproachisnecessary.
Organizationsmustembracetransparency,ethics,andfairnessintheirAIendeavors.Considerusingaplaybook,likethisone,toremindeveryoneinvolvedinAIsystemsdesigntothinkaboutthemultiplefacetsthatleadto
successfulAI,notjustonaccuracyalone.
?Oneoftheprimarypitfallsisamyopicfocusontechnicalmetrics.Ignoringbiasesintrainingdata,overlooking
ethicalimplications,orneglectingcommunityfeedbackcanleadtocatastrophicoutcomes.Contextualfit,forinstance,cannotbemeasuredeasily.Butisthefinal
definingfactorfor“goodness”
LINKS
?ValidatingLargeLanguageModelswithReLM.Kuschnicketal.CarnegieMellonUniversity,2023.
/
pdf/2211.15458.pdf
?Langchainblogpost:“HowCorrectareLLMEvaluators”,problematizingthepossibilitiestofacilitatemeasurementof“provenaccuracy”.
https://blog.langchain.dev/how
-
correct-are-llm-evaluators/
?GEDLTprojectonprompting,writingstylesandqualityof
answeringTheGDELTProjectisarealtimenetworkdiagramanddatabaseofglobalhumansocietyforopenresearch:
/large-language-models-llms
-
planetary-scale-realtime-data-current-limitations/
9
PROVENABILITY
MITALIAGRAWAL
ROBUST
in
EXPERTINRESIDENCE
WillanAIsystemalwaysrespondtosimilarinputsinaconsistentmanner?Canitcope
withdeliberatemaliciousattacksintheinput?Allofthesequestionsrelatetotheideaofrobustness-ameasureofhowwellanAIsystembehaveswhenthesignalsitreceivesarenotthesameaswhatitwastrainedon.
RobustnessisacornerstoneofreliableAIsystems,ensuringresilienceinthefaceofadversity.Inthedynamiclandscapeofartificialintelligence,twoparamountchallengesarise:dealingwiththehugevariationofinputsasystemwillencounterintherealworldinaconsistentmanneranddefendingagainstdeliberatelymaliciousinputs,oftenmanifestedasadversarialattacks.
UnderstandingandfortifyingAIagainstthesechallengesisessentialinshapingafuturewhereAItechnologiescanbetrustedandreliedupon.
WHY?
.InanerawhereAIisincreasinglyprevalentinourdailylives,robustnessisafundamentalpillaroftrustworthiness.
.Duetotheircomplexitythough,AIsystemsaresusceptibleto
variousvulnerabilities,bothinthealgorithmsandthedatatheyaretrainedon.
.AsimplewaytodemonstrateifanAIsystemisrobustornotistoaskittoperformasimilartasktwice.Providingsignificantlydifferent
answerstothesamequestionwillcausehumanstorapidlylosetrustinthesystem,butmanyAIsystemswillfailthissimpletest.
.Therewillalwaysbeconfusinginputsinthereal-world,and
unfortunatelytherewillalwaysbemaliciousactorswhotryto
deliberatelyaffecttheoutputsofourAIsystems.Eveninthebestcases,withnomaliciousactor,wewillstillforeverbelockedinanarmsracebetweenourmachinelearningmodelsandtheinfinitecomplexitythattherealworldwillthrowatthem.
.Therefore,therewillalwaysbeaneedtouseapproachesto
maximizetherobustnessofourAImodels,andinsomecaseswerequireverifiableproofofthatrobustness.
.Byaddressingthecomplexitiesofunusualdataandadversarial
10GenAILab2024
ROBUST
attacks,wepavethewayforAIsystemsthatnotonlyexcelunderidealcircumstancesbutareresilientinthefaceof
unexpectedinputsanddeliberateattacks.
WHAT?
.Whilstmachinelearningexpertshavelongknownabouttheproblemsofrobustness,GenerativeAItoolsnow
alloweveryonetoseetheextentofthisproblem–evensmallchangesinthephrasingofapromptcanproducecompletelydifferentoutputsandmeanings.
.Deliberatelymaliciousinputs,knownasadversarial
attacks,exploitthevulnerabilitiesofAIsystems,leadingthemtomakeerroneousjudgments.Theseattackscanhavedireconsequences,especiallyinsafety-related
applicationssuchasautonomousvehiclesorhealthcaresystems,somakingrobustdefensesisimperative.
.Adversarialattacksfallintotwomainclasses
.White-boxattackswhichuseknowledgeofthemodeltoachievetheirimpact.
.Black-boxattackswhichdonothaveknowledgeoftheunderlyingmodel.
.Theseattacksmightalsobeuntargeted,wheretheaimistojustachieveanycorruptionoftheoutput,ortargeted,wheretheaimistocoercethemodeltoproduceaspecificoutput.
.Thankfully,maliciousattacksonAIsystemsarerelativelyrare,andthemorecommonproblemiswhereAI
systemsencounteratypical,unfamiliardatainreal-worldscenarios.Thiscanrangefromnovelenvironmental
conditionsforautonomousvehiclestounprecedenteduserinputsinchatbots,challengingthesystem’sabilitytomakeaccuratepredictionsordecisions.
.Whenfacedwithunusualdata,AIsystemsmightexhibitunpredictablebehavior,potentiallyjeopardizingthe
trustabilityoftheoutputs.Ensuringrobustnessinsuchsituationsnecessitatestrainingmodelsnotjustonlargerdatasetsbutonmorediversedatasetsthatencompass
(A)
awidearrayofpossibleinputs,preparingthemforunforeseenscenarios.
RECOMMENDATIONS
.Makesureyouunderstandthescaleoftheproblemin
yourusecase–testyoursystemstomakesurethatsmallchangesintheinputdonotproducesignificantchangesinthemeaningoftheoutput.
.ForLLMsspecifically,guaranteedrobustnessismuch
hardertoachievebecausethesemodelsdonotactuallyunderstandthemeaningofthelanguagetokenstheymanipulate.Whereahumanmightseetwophrases
asbeingthesame,theycouldbeinterpretedinverydifferentwaysbyanLLMandproducingsubstantiallydifferentoutputs.
.Additionally,inputpreprocessingtechniquescould
(B)
enhanceasystem’sabilitytoprovidemorerobustresultsbyensuringmultiplerephrasedversionsofthepromptproduceconsistentoutput.
.Traditionallyusedincybersecurity,redteaminginvolvessimulatingadversarialattackstoidentifyvulnerabilitiesandweaknessesinasystem.WhenappliedtoAI,red
teamingservesasapotenttooltoassesstheresilienceofmachinelearningmodels,algorithms,andapplicationsagainstmaliciousintentandunexpectedinputs.
.Wecanalsouseothermachinelearningsystemsasaredteam,exploitingmalicioustechniquesforpositiveuseinanapproachcalledadversarialtraining.Inthisapproachmodelsareexposedtoadversarialexamplesduring
training,enablingthemtorecognizeandresistsuch
inputs.Thisapproachpitsonemachinelearningsystemagainsttheother,resultinginbothbeingbetterandtheoverallsystembeingsignificantlymorerobust.
.Insomecases,itmaybepossibletouseverifiably
robustapproachestotraining,suchasIntervalBound
Propagation(IBP),whichcanguaranteecertainlevelsofrobustness,althoughoftenattheexpenseofaccuracyi.e.overallaccuracymaybelower,butyoucanbesurethat
whenitdoesmakeapredictionitiscorrect.
Imagesshowingconfusingdataan
AIvisionsystemmightencounterin
thereal-world,sometimesnaturally
occurring,sometimesasaresultof
maliciousattacks.
Anexampleofhowaseeminglyinconsequentialreframing
oftheinputtoanLLMcanproducesubstantiallydifferent,
andincorrect,output.
11
WEIWEIFENG
DEPENDABILITY
in
EXPERTINRESIDENCE
WhilstmostofthepropertiesdescribedinthisplaybookrelatetothecontentandqualityofanAIsystem’soutput,weoftenneglectsomeoftheoperationalconsiderationsfor
deployingAIinreal-worldsituations.Oneofthemostimportantoftheseisdependability–willanAIsystemactuallygiveusananswerwhenweneedit?
AswestarttomoveAIsystemsfromthelabtothereal-world,one
ofthepracticalrealitiesthatwemustconsideristiming.Inmany
cases,thespeedofanAIsystem’sresponseiscrucial.Itdoesn’treallymatterifacustomer-servicechatbottakes10secondstorespond,butitwouldclearlybeabigproblemifanautonomousvehicletook10
secondstoconsideritsactionswhilstdrivingatspeedonaroad.
Thispresentsanimportantanddifficultdilemmatosolve.ModernAIhasachievedmanyimpressiveresults,butthisislargelypoweredby
hugeneuralnetworkmodelswhichareslowtoexecuteandrequirelevelsofcomputepowerthatarenormallynotavailableinreal-worlddeploymentsofAIsystems.Ifwedon’thaveguaranteesthatanAI
systemwillrespondasquicklyasweneeditto,thenconfidence
andadoptionwillfalter.Fundamentallydifferentarchitecturesarerequiredwheretimelinessofresponseisimportant.
12GenAILab2024
DEPENDABILITY
WHY?
?Inreal-worlddeploymentsofAI,timingmatters.Ahigh-performingmodelwithgoodaccuracyisworthlessifit
doesn’trespondquicklyenoughforitsoutputtobeused.
?Thisismostobviousinsafety-criticalandreal-timecontrolsituationswherenon-negotiableguaranteesonresponsetimesarepresent.
?Eveninsituationsthatarenotsafety-related,responsetimecandramaticallyaffecttheuserexperiencetothepointthattheymightloseconfidenceinasystemthatdoesn’trespondquicklyenough.
?Inothersituations,lowlatencyresponsesarerequiredforreasonsofresponsivenessandthroughput.Longdeliberationinpursuitoftheperfectanswerinthesetypesofproblemscouldcausewidespreaddisruption.Forexample–
?Incredit-cardfrauddetection,wherevastnumbersof
transactionsmustbeassessedquicklytopreventdelays.
?InAI-supportedemergencyresponsesystems,wherestressandtheneedforswiftinformationavailabilityhaveadirectimpactonoutcomes.
?Inreal-timeschedulingproblems,suchastraffic-lightscheduling,elevatordispatchingetc.
?Dynamicadvertisementselectiononwebsites,whereaslowdecisionwouldruintheuser-experienceofthehostwebsite.
WHAT?
?ThespeedofanAIsystem’sresponsehasalwaysbeena
primaryconsiderationinAIresearch,asmanyoftheclassicbenchmarksofartificialintelligencehaveatimingelementtothem–playinggames,havingconversations,driving
vehicles,interactiverobotsetc.
?Inmanycasesitmaybepossibletosolveamachine
learningtaskwithgoodorevenperfectaccuracyiftimingisnotanissue,butsolvingtheengineeringproblemof
deployingthatsamemodelintoamoreconstrainedandtime-criticalenvironmentmaybeimpossible.
?Insomecases,itmaybepossibletocompressorprunealargemodel,toimproveitsresponsetime.ThisisalreadycommonplaceinmanyEdgeAIdeploymentsinorder
tosqueezemoreperformanceoutoflimitedhardware.However,whilstthisapproachimprovesperformance,itcannotguaranteeperformance.
?Mostmachinelearningmodelsareeffectivelynon-
deterministic,meaningthattheexecutionofthe
model(inference)willneverbepredictable.Therefore,ifguaranteesofperformancearerequired,then
justshrinkingabigmodelwillneverbetheanswer.Fundamentallydifferentarchitecturesarerequired.
?Themostobviousandwell-knownarchitectureisthe
so-calledclassifier-cascade.Inthiscase,machinelearning
modelsarearrangedinacascade,startingwithextremelysimpleandsmallclassifiersthatcanprovideaquickanswerimmediately.Iftimeallows,processingpassesontoamorecomplexbuttime-consumingclassifier,andthisprocess
continuestothebottomofthestack.Thisarchitecturemeansthatananswercanbewecaninterruptthe
processingatanypointandgetananswer.
?Thisissimilartowhatweseeinhumandecisionmaking,wherewehavefast“System1”thinkingtogivean
immediateresponse,followedbyslowerandmore
deliberate“System2”thinking.Inthecaseofclassifiercascades,theremaybehundredsoflevels,iterativelyrefiningtheanswerasfarastimeallows.
?Inmostcases,thefirstlevelofsuchacascadewouldbeanon-AIsystem,whichencodesbasicdefaultbehavior.
?Theperformanceofsystemscanbeenhancedthroughtieredapproaches.Ateachtier,thesolutionshould
beevaluatedagainsttheprevioustiertodetermineifitprovidesasignificantimprovement.Thisevaluationprocessallowsforearlytermina
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版特定事項連帶保證協(xié)議版B版
- 2024文化創(chuàng)意產(chǎn)業(yè)合作開發(fā)協(xié)議
- 2024年綠色能源項目內(nèi)部股東股權(quán)轉(zhuǎn)讓與權(quán)益調(diào)整協(xié)議3篇
- 2025年度:區(qū)塊鏈技術(shù)應(yīng)用合同標(biāo)的數(shù)字資產(chǎn)安全3篇
- 2024年綜合勞務(wù)服務(wù)協(xié)議標(biāo)準(zhǔn)格式版B版
- 2024年生態(tài)園林景觀木工勞務(wù)分包合同匯編指南3篇
- 二零二五年度alc隔墻板生產(chǎn)設(shè)備融資租賃合同3篇
- 二零二五年度個人股權(quán)受讓方后續(xù)支持服務(wù)協(xié)議3篇
- 二零二五年企業(yè)內(nèi)部辦公自動化系統(tǒng)升級與維護服務(wù)合同9篇
- 園林綠化專項施工方案
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國特厚板市場占總銷售量45.01%
- 2024版影視制作公司與演員經(jīng)紀公司合作協(xié)議3篇
- 2024年上海市初三語文二模試題匯編之記敘文閱讀
- 2024年度上海市嘉定區(qū)工業(yè)廠房買賣合同2篇
- 2023-2024學(xué)年廣東省廣州市海珠區(qū)九年級(上)期末化學(xué)試卷(含答案)
- 音樂老師年度總結(jié)5篇
- 自動控制理論(哈爾濱工程大學(xué))知到智慧樹章節(jié)測試課后答案2024年秋哈爾濱工程大學(xué)
- SAP WM模塊前臺操作詳解(S4版本)
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計規(guī)范
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(含答案)
評論
0/150
提交評論