2024屆高考物理第一輪復習重難點練習:第五章 第1講 萬有引力定律及應用_第1頁
2024屆高考物理第一輪復習重難點練習:第五章 第1講 萬有引力定律及應用_第2頁
2024屆高考物理第一輪復習重難點練習:第五章 第1講 萬有引力定律及應用_第3頁
2024屆高考物理第一輪復習重難點練習:第五章 第1講 萬有引力定律及應用_第4頁
2024屆高考物理第一輪復習重難點練習:第五章 第1講 萬有引力定律及應用_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第五章萬有引力與宇宙航行

2022?湖南卷?T82022?浙江1月選考了8

開普勒行星運動定律2021?全國甲卷-T182021?天津卷?T5

2021?北京卷?T62021?福建卷?T8

2022?全國乙卷-T142022?遼寧卷?T9

考2022?河北卷?T22022?廣東卷?T22021?全國

情乙卷-T182021?山東卷?T52020?全國卷

萬有引力定律及應用

分IT152020?全國卷H-T152020?山東

析卷.T72020.浙江7月選考172018?全國卷

IIT16

2022?湖北卷?T22022?山東卷?T62021?湖南

人造衛(wèi)星宇宙速度

卷-T72020?全國卷HLT162020?天津卷-T2

雙星模型2018?全國卷I?T20

生活實踐類地球不同緯度重力加速度的比較

開普勒第三定律的應用,利用“重力加速度

試題法”“環(huán)繞法”計算天體的質(zhì)量和密度,衛(wèi)

情境學習探究類星運動參量的分析與計算,人造衛(wèi)星,宇宙

速度,天體的“追及”問題,衛(wèi)星的變軌和

對接問題,雙星或多星模型

第1講萬有引力定律及應用

【目標要求】1.理解開普勒行星運動定律和萬有引力定律,并會用來解決相關(guān)問題2掌握計算

天體質(zhì)量和密度的方法.

考點一開普勒行星運動定律

?梳理必備知識

定律內(nèi)容圖示或公式

所有行星繞太陽運動的軌道

開普勒第一定律(軌道定律)都是橢圓,太陽處在橢圓的一

個隹盧上

對任意一個行星來說,它與太&

開普勒第二定律(面積定律)陽的連線在相等的時間內(nèi)掃

過的面積相等

所有行星軌道的半長軸的三

聲=%,%是一個與行星

開普勒第三定律(周期定律)次方跟它的公轉(zhuǎn)周期的二次

方的比都相等無關(guān)的常量

■判斷正誤

1.圍繞同一天體運動的不同行星橢圓軌道不一樣,但都有一個共同的焦點.(V)

2.行星在橢圓軌道上運行速率是變化的,離太陽越遠,運行速率越大.(X)

3.不同軌道上的行星與太陽的連線在相等時間內(nèi)掃過相等的面積.(X)

■提升關(guān)鍵能力

1.行星繞太陽運動的軌道通常按圓軌道處理.

2.由開普勒第二定律可得知1打=加2廠2,%必"1=$2公5,解得言=.,即行星在兩個位置

的速度大小之比與到太陽的距離成反比,近日點速度最大,遠日點速度最小.

3.開普勒第三定律竽=%中,%值只與中心天體的質(zhì)量有關(guān),不同的中心天體k值不同,且

該定律只能用在同一中心天體的兩星體之間.

【例11某行星沿橢圓軌道繞太陽運行,如圖所示,在這顆行星的軌道上有。、b、C、d四個

點八c在長軸上,b、d在短軸上.若該行星運動周期為T,則該行星()

A.從a到b的運動時間等于從c到d的運動時間

B.從d經(jīng)。到b的運動時間等于從b經(jīng)c到d的運動時間

c.。到人的時間桃〉w

D.c到d的時間

答案D

解析據(jù)開普勒第二定律可知,行星在近日點的速度最大,在遠日點的速度最小,行星由a

到b運動時的平均速率大于由c到4運動時的平均速率,而弧長時等于弧長cd,故從a至4b

的運動時間小于從c到d的運動時間,同理可知,從d經(jīng)a到/?的運動時間小于從。經(jīng)c到

d的運動時間,A、B錯誤;從a經(jīng)6到c的時間和從c經(jīng)1到a的時間均為,,可得/而

tbc=t“i>2,C錯誤,D正確.

【例2】如圖所示,1、2分別是4、8兩顆衛(wèi)星繞地球運行的軌道,1為圓軌道,2為橢圓軌

道,橢圓軌道的長軸(近地點和遠地點間的距離)是圓軌道半徑的4倍.P點為橢圓軌道的近

地點,M點為橢圓軌道的遠地點,r是衛(wèi)星A的周期.則下列說法正確的是()

M

A.8衛(wèi)星在由近地點向遠地點運動過程中受到地球引力將先增大后減小

B.地心與衛(wèi)星B的連線在小。時間內(nèi)掃過的面積為橢圓面積

C.衛(wèi)星B的周期是衛(wèi)星A的周期的8倍

D.1軌道圓心與2軌道的一個焦點重合

答案D

解析根據(jù)萬有引力定律有尸=G^,8衛(wèi)星在由近地點向遠地點運動過程中受到地球引力

逐漸減小,A錯誤;根據(jù)開普勒第三定律得去=嘴^,解得TB=2用TA,所以地心與衛(wèi)星B

的連線在近〃時間內(nèi)掃過的面積小于橢圓面積,B、C錯誤;1軌道圓心在地心,2軌道的一

個焦點也在地心,所以二者重合,D正確.

考點二萬有引力定律

■梳理必備知識

1.內(nèi)容

自然界中任何兩個物體都相互吸引,引力的方向在它們的連線上,引力的大小與物體的質(zhì)量

如和他的乘積成正比、與它們之間距離廠的二次方成反比.

2.表達式

尸=畔與G為引力常量,通常取G=6.67X10"N-m2/kg2,由英國物理學家卡文迪什測定.

3.適用條件

(1)公式適用于質(zhì)點間的相互作用,當兩個物體間的距離遠大于物體本身的大小時,物體可視

為質(zhì)點.

(2)質(zhì)量分布均勻的球體可視為質(zhì)點,/■是兩球心間的距離.

■判斷正誤

1.只有天體之間才存在萬有引力.(X)

2.只要知道兩個物體的質(zhì)量和兩個物體之間的距離,就可以由F=G詈段計算物體間的萬有

引力.(X)

3.地面上的物體所受地球的萬有引力方向一定指向地心.(V)

4.兩物體間的距離趨近于零時,萬有引力趨近于無窮大.(X)

?提升關(guān)鍵能力

1.星體表面及上空的重力加速度(以地球為例)

(1)地球表面附近的重力加速度大小g(不考慮地球自轉(zhuǎn)):有mg=G筆,得且=償.

(2)地球上空的重力加速度大小g'

地球上空距離地球中心r=R+〃處的重力加速度大小為g’,則有,咫'=潞>得g'=

2

GM所以/(R+h)

(R+〃產(chǎn)=R2

2.萬有引力的“兩點理解”和“兩個推論”

(1)兩點理解

①兩物體相互作用的萬有引力是一對作用力和反作用力.

②地球上(兩極除外)的物體受到的重力只是萬有引力的一個分力.

(2)星體內(nèi)部萬有引力的兩個推論

①推論1:在勻質(zhì)球殼的空腔內(nèi)任意位置處,質(zhì)點受到球殼的各部分萬有引力的合力為零,

即£尸磯=0.

②推論2:在勻質(zhì)球體內(nèi)部距離球心r處的質(zhì)點(,")受到的萬有引力等于球體內(nèi)半徑為r的同

M'm

心球體(M')對它的萬有引力,即尸=G1^.

考向1萬有引力定律的理解和簡單計算

【例3】(2020?全國卷1?15)火星的質(zhì)量約為地球質(zhì)量的古,半徑約為地球半徑的今則同一物

體在火星表面與在地球表面受到的引力的比值約為()

A.0.2B.0.4C.2.0D.2.5

答案B

解析萬有引力表達式為尸=6嗎"則同一物體在火星表面與在地球表面受到的引力的比

值為善=乎1=04,選項B正確.

考向2挖補法求解萬有引力

□列4】有一質(zhì)量為M、半徑為R的密度均勻球體,在距離球心O為3R的地方有一質(zhì)量為

〃,的質(zhì)點.先從M中挖去一半徑烤的球體,如圖所示,已知引力常量為G,則剩余部分對

質(zhì)點的萬有引力大小為()

Mm「Mm

A.G乘B.G而

JMm

r41Mw

。0450/?2D,G頻

答案C

解析半徑為R且密度均勻的完整球體對距離球心。為3R且質(zhì)量為m的質(zhì)點的萬有引力大

小為F=G,宵,,挖去部分的質(zhì)量為M'=,"X為和=4,挖去部分對質(zhì)點的萬

'(3火)-13J28

1

m-M版1

-8+

有引力大小為尸產(chǎn)①21則剩余部分對質(zhì)點的萬有引力大小為F

-502

7?■2

41Mm

=F—F\,解得尸2=G西麻,故選C.

考向3重力和萬有引力的關(guān)系

工例5】某行星為質(zhì)量分布均勻的球體,半徑為R、質(zhì)量為M.科研人員研究同一物體在該行

星上的重力時,發(fā)現(xiàn)物體在“兩極”處的重力為“赤道”上某處重力的1.1倍.已知引力常

量為G,則該行星自轉(zhuǎn)的角速度為()

解析設(shè)赤道處的重力加速度大小為g,物體在兩極時萬有引力大小等于重力大小,即

=l.]/ngf在赤道時萬有引力大小等于重力和自轉(zhuǎn)所需的向心力的合力大小,即

2#尊,故選B.

mcoRf由以上兩式解得該行星自轉(zhuǎn)的角速度為co=

規(guī)律總結(jié)萬有引力與重力的關(guān)系

地球?qū)ξ矬w的萬有引力f"表現(xiàn)為兩個效果:一是重力mg,二是提供物體隨地球自轉(zhuǎn)的向心

力F向,如圖所示.

(1)在赤道上:

mgi+mw2R.

(2)在兩極上:—mgo.

(3)在一般位置:萬有引力G下等于重力mg與向心力的矢量和.

越靠近兩極,向心力越小,g值越大.由于物體隨地球自轉(zhuǎn)所需的向心力較小,常認為萬有

引力近似等于重力,即黑jng.

考向4地球表面下重力加速度的計算

【例6】(2023?湖北省模擬)中國科學院沈陽自動化研究所主持研制的“海斗一號”在無纜自主

模式下刷新了中國下潛深度紀錄,最大下潛深度超過了10000米,首次實現(xiàn)了無纜無人潛水

器萬米坐底并連續(xù)拍攝高清視頻影像.若把地球看成質(zhì)量分布均勻的球體,且球殼對球內(nèi)任

一質(zhì)點的萬有引力為零,忽略地球的自轉(zhuǎn),則下列關(guān)于“海斗一號”下潛所在處的重力加速

度大小g和下潛深度人的關(guān)系圖像可能正確的是()

答案D

解析設(shè)她球的質(zhì)量為M,地球的半徑為R,“海斗一號”下潛〃深度后,以地心為球心、

MM'

以R—〃為半徑的球體的質(zhì)量為,則根據(jù)密度相等有^—=4---------,由于球殼對球內(nèi)

鏟R3鏟

M'm

任一質(zhì)點的萬有引力為零,根據(jù)萬有引力定律有G(R_/[)2=mg,聯(lián)立以上兩式并整理可得g

=誓(/?一?,由該表達式可知D正確,A、B、C錯誤.

考點三天體質(zhì)量和密度的計算

1.利用天體表面重力加速度

己知天體表面的重力加速度g和天體半徑R.

(1)由G^得天體質(zhì)量M=管.

一十人上4A/M3g

(2)天體岔度"=歹===4兀GR

2.利用運行天體

已知衛(wèi)星繞中心天體做勻速圓周運動的半徑,?和周期T.

Mm4兀24K2r3

⑴由=/zrr得加=

GjT?GT1,

(2)若已知天體的半徑R,則天體的密度"=岸=產(chǎn)=滯那.

3兀

(3)若衛(wèi)星繞天體表面運行,可認為軌道半徑r等于天體半徑R,則天體密度p=藤,故只要

測出衛(wèi)星環(huán)繞天體表面運動的周期T,就可估算出中心天體的密度.

考向1利用“重力加速度法”計算天體質(zhì)量和密度

【例7】宇航員在月球表面將一片羽毛和一個鐵錘從同一高度由靜止同時釋放,二者幾乎同時

落地.若羽毛和鐵錘是從高度為/?處下落,經(jīng)時間f落到月球表面.已知引力常量為G,月

球的半徑為R(不考慮月球自轉(zhuǎn)的影響).求:

(1)月球表面的自由落體加速度大小gH;

(2)月球的質(zhì)量用;

(3)月球的密度p.

較安.但⑵迦⑶,獨.

u案(辦⑵G尸⑶2兀/?6祥

解析⑴月球表面附近的物體做自由落體運動,有/?=上“尸

月球表面的自由落體加速度大小g"=春

(2)不考慮月球自轉(zhuǎn)的影響,有G芍=,叫月,得月球的質(zhì)量加=器

2hR2

(3)月球的密度〃=%親丁石鼠.

守3

考向2利用“環(huán)繞法”計算天體質(zhì)量和密度

【例8】(2023?四川內(nèi)江市模擬)登月艙在離月球表面112km的高空圓軌道上,環(huán)繞月球做勻

速圓周運動,運動周期為120.5min,月球的半徑約為1.7XICPkm,只考慮月球?qū)Φ窃屡摰?/p>

作用力,引力常量G=6.67X10"Nm2/kg2,則月球質(zhì)量約為()

A.6.7X1022kgB.6.7X1023kg

C.6.7X1024kgD.6.7X1025kg

答案A

解析由題意可知,/?=112km=1.12X105m,7=120.5min=7230s,/?=1.7X103km=

1.7X106m,設(shè)月球的質(zhì)量為M,登月艙的質(zhì)量為根,由月球?qū)Φ窃屡摰娜f有引力提供向心

Mm47r24兀彳7?+/?)3

力,可得G(R+h)2=,/~(R+h),可有M=-G/.,代入數(shù)據(jù)解得M^6.7XKFkg>A

正確,B、C、D錯誤.

【例91(多選)(2023?黑龍江省鶴崗一中高三檢測)“嫦娥五號”探測器繞月球做勻速圓周運動

時,軌道半徑為廣,速度大小為。.已知月球半徑為R,引力常量為G,忽略月球自轉(zhuǎn)的影響.下

列選項正確的是()

、3浮

A.月球平均密度為戒后

B.月球平均密度句怒

C.月球表面重力加速度大小為g

A

2

D.月球表面重力加速度大小為賽

答案BD

解析由萬有引力提供向心力,可得G券■=,*,解得何=*,月球體積V=%R3,所以

月球平均密度為2=,=怖賒,故A錯誤,B正確;在月球表面,有心得=,“,解得月

球表面重力加速度大小為g=/~=五故C錯誤,D正確.

課時精練

ET基礎(chǔ)落實練

1.在萬有引力定律的發(fā)現(xiàn)歷程中,下列敘述符合史實的是()

A.開普勒通過分析第谷的天文觀測數(shù)據(jù),發(fā)現(xiàn)了萬有引力定律

B.丹麥天文學家第谷經(jīng)過多年的天文觀測和記錄,提出了“日心說”的觀點

C.卡文迪什通過實驗推算出來引力常量G的值,被譽為第一個能“稱量地球質(zhì)量”的人

D.伽利略利用“地—月系統(tǒng)”驗證了萬有引力定律的正確性,使得萬有引力定律得到了推

廣和更廣泛的應用

答案C

解析萬有引力定律是由牛頓發(fā)現(xiàn)的,故A錯誤;日心說是哥白尼提出的,故B錯誤;卡文

迪什通過扭稱裝置測出了引力常量,由黃金代換式可得地球質(zhì)量,故C正確;牛頓利用“地

—月系統(tǒng)”驗證了萬有引力定律的正確性,故D錯誤.

2.火星和木星沿各自的橢圓軌道繞太陽運行,根據(jù)開普勒行星運動定律可知()

A.太陽位于木星運行軌道的中心

B.火星和木星繞太陽運行速度的大小始終相等

C.火星與木星公轉(zhuǎn)周期之比的平方等于它們軌道半長軸之比的立方

D.相等時間內(nèi),火星與太陽連線掃過的面積等于木星與太陽連線掃過的面積

答案C

解析由開普勒第一定律(軌道定律)可知,太陽位于木星運行橢圓軌道的一個焦點上,故A

錯誤;火星和木星繞太陽運行的軌道不同,運行速度的大小不可能始終相等,故B錯誤;根

據(jù)開普勒第三定律(周期定律)知,太陽系中所有行星軌道的半長軸的三次方與它的公轉(zhuǎn)周期

的平方的比值是同一個常數(shù),故C正確;對于太陽系某一個行星來說,其與太陽連線在相等

的時間內(nèi)掃過的面積相等,不同行星在相等時間內(nèi)掃過的面積不相等,故D錯誤.

3.(2023?河南省孟津縣一中檢測)國際小行星中心于2021年10月8日確認公布了中國科學院

紫金山天文臺發(fā)現(xiàn)的一顆新彗星,命名為C/2021s4.這顆彗星與太陽的最近距離約為7AU,

繞太陽轉(zhuǎn)一圈約需要1000年,假設(shè)地球繞太陽做圓周運動,地球與太陽的距離為1AU,引

力常量已知.則()

A.由以上數(shù)據(jù)不可估算太陽的質(zhì)量

B.由以上數(shù)據(jù)可估算太陽的密度

C.彗星由近日點向遠日點運動時機械能增大

D.該彗星與太陽的最遠距離約為193AU

答案D

Mm4兀~4冗”/

解析地球環(huán)繞太陽做圓周運動時,由萬有引力提供向心力有解得加=方^,

由于地球的軌道半徑和公轉(zhuǎn)周期及引力常量G已知,則可估算中心天體(太陽)的質(zhì)量,A錯

誤;由于太陽的半徑未知,則太陽的密度不能估算,B錯誤;彗星由近日點向遠日點運動的

過程中,只有太陽的引力做功,則機械能守恒,C錯誤;由開普勒第三定律可得%=玄,代

入數(shù)據(jù)得彗星的半長軸為a=100AU,所以彗星與太陽的最遠距離約為2a-7AU=193AU,

D正確.

4.(多選)宇航員在地球表面以一定初速度豎直上拋一小球,經(jīng)過時間/小球落回原處.若他

在某星球表面以相同的初速度豎直上拋同一小球,需經(jīng)過時間5/小球落回原處.已知該星球

的半徑與地球半徑之比為R鼠:R地=1:4,地球表面重力加速度為g,設(shè)該星球表面附近的

重力加速度大小為g',空氣阻力不計,忽略地球和星球自轉(zhuǎn)的影響.貝4()

A.g':g=l:5B.g':g=5:2

C.Ma::20D.仞星:M地=1:80

答案AD

解析設(shè)初速度為00,由對稱性可知豎直上拋的小球在空中運動的時間f=細,因此得&—=

gg

選項A正確,B錯誤;由蝶=Eg得M=喑,則,=今/=卜。$,選項

C錯誤,D正確.

5.國產(chǎn)科幻巨作《流浪地球》引起了人們對地球如何離開太陽系的熱烈討論.其中有一種思

路是不斷加速地球使其圍繞太陽做半長軸逐漸增大的橢圓軌道運動,最終離開太陽系.假如

其中某一過程地球剛好圍繞太陽做橢圓軌道運動,地球到太陽的最近距離仍為R,最遠距離

為7K(R為加速前地球與太陽間的距離),則在該軌道上地球公轉(zhuǎn)周期將變?yōu)椋ǎ?/p>

A.8年B.6年C.4年D.2年

答案A

R3\2)

解析由開普勒第三定律得?丁,解得T'=8年,選項A正確.

6.(2021.全國乙卷.18)科學家對銀河系中心附近的恒星S2進行了多年的持續(xù)觀測,給出1994

年到2002年間S2的位置如圖所示.科學家認為S2的運動軌跡是半長軸約為1000AU(太陽

到地球的距離為1AU)的橢圓,銀河系中心可能存在超大質(zhì)量黑洞.這項研究工作獲得了2020

年諾貝爾物理學獎.若認為S2所受的作用力主要為該大質(zhì)量黑洞的引力,設(shè)太陽的質(zhì)量為

M,可以推測出該黑洞質(zhì)量約為()

,1997

?1998

,1999

A.4X104MB.4X106A/

C.4X108MD.4XlO,oM

答案B

切能力綜合練

7.(多選)(2022?重慶卷?9)我國載人航天事業(yè)已邁入“空間站時代”.若中國空間站繞地球近

似做勻速圓周運動,運行周期為T,軌道半徑約為地球半徑的長倍,已知地球半徑為R,引

力常量為G,忽略地球自轉(zhuǎn)的影響,則()

A.漂浮在空間站中的宇航員不受地球的引力

B.空間站繞地球運動的線速度大小約為甯

02

C.地球的平均密度約為券制3

D.空間站繞地球運動的向心加速度大小約為地面重力加速度的(引2倍

答案BD

解析漂浮在空間站中的宇航員依然受地球的引力,所受引力提供向心力,做勻速圓周運動,

處于完全失重狀態(tài),視重為零,故A錯誤:根據(jù)勻速圓周運動的規(guī)律,可知空間站繞地球運

17

2TCX—/?

動的線速度大小約為0=—=J,故B正確;設(shè)地球質(zhì)量為M,空間站的質(zhì)量為加,

1O1

M

其所受萬有引力提供向心力,有,則地球的平均密度約為〃=

的券,故C錯誤;根據(jù)萬有引力提供向心力,有則空間站繞地球運動的

向心加速度大小為a~,'^~1,地面的重力加速度為8=力~,可得"=(萬即空間站繞地

IW

球運動的向心加速度大小約為地面重力加速度大小的(雪1倍,故D正確.

8.將一質(zhì)量為m的物體分別放在地球的南、北兩極點時,該物體的重力均為mgo;將該物

體放在地球赤道上時,該物體的重力為假設(shè)地球可視為質(zhì)量均勻分布的球體,半徑為R,

已知引力常量為G,則由以上信息可得出()

A.go小于g

B.地球的質(zhì)量為震

C.地球自轉(zhuǎn)的角速度為3=/

D.地球的平均密度為贏

答案C

解析設(shè)地球的質(zhì)量為M,物體在赤道處隨地球自轉(zhuǎn)做圓周運動的角速度等于地球自轉(zhuǎn)的角

速度,軌道半徑等于地球半徑,物體在赤道上受到的重力和物體隨地球自轉(zhuǎn)所需的向心力是

萬有引力的分力,有C^^~—mg=nico2R,物體在兩極受到的重力等于萬有引力,即

mgo,所以go>g,故A錯誤;在兩極有唯0=心得,解得”=弟~,故B錯誤;由

___遜

mg=相①爾,mgo=,解得CO=,&)R&,故C正確;地球的平均密度2=華=言一=1翔,

,鏟R3

故D錯誤.

9.(2023?重慶市模擬)2021年5月15日,“天問一號”著陸巡視器成功著陸于火星烏托邦平

原,中國首次火星探測任務(wù)著陸火星取得圓滿成功.如果著陸前著陸器近火星繞行的周期為

100min.已知地球平均密度為5.5X1()3kg/m-*地球近地衛(wèi)星的周期為85min.估算火星的平均

密度約為()

A.3.8X103kg/m3B.4.0X103kg/m3

C.4.2X103kg/m3D.4.5X103kg/m3

答案B

GMm47r2

解析衛(wèi)星在行星表面繞行星做勻速圓周運動時,根據(jù)萬有引力提供向心力可得一"一="!,■

R,設(shè)行星密度為p,則有?爭?3,聯(lián)立可得P=券8/,則有發(fā)=關(guān),解得火星的平

7V852

均密度約為"火=Kz^=,X5.5X103kg/m3^4.0X103kg/m3,B正確,A、C、D錯誤.

10.(2023?四川省成都模擬)如圖所示,A、8兩顆衛(wèi)星繞地球做勻速圓周運動,O為地心,

在兩衛(wèi)星運行過程中,AB連線和OA連線的夾角最大為仇則A、B兩衛(wèi)星()

A.做圓周運動的周期之比為2d高

B.做圓周運動的周期之比為福

C.與地心。連線在相等時間內(nèi)掃過的面積之比為

D.與地心。連線在相等時間內(nèi)掃過的面積之比為磊

答案C

7\2

解析夾角最大時,。8與AB垂直,根據(jù)幾何關(guān)系有rB=〃sine,由開普勒第三定律可得辦

—A、B錯誤;r時間內(nèi),衛(wèi)星與地心連線掃過的面積5=/兀/,則治=

i,

~rB

TH以2

元/一C正確,D錯誤.

11.(2021?全國甲卷48)2021年2月,執(zhí)行我國火星探測任務(wù)的“天問一號”探測器在成功實

施三次近火制動后,進入運行周期約為1.8X105s的橢圓形停泊軌道,軌道與火星表面的最

近距離約為2.8X105m.已知火星半徑約為3.4X106m,火星表面處自由落體的加速度大小

約為3.7m/s2,則“天問一號”的停泊軌道與火星表面的最遠距離約為()

A.6X105mB.6X106m

C.6X107mD.6X108m

答案C

GMm

解析忽略火星自轉(zhuǎn),則在火星表面有不一=成?,可知GM=gQ設(shè)與運行周期為1.8X105

S的橢圓形停泊軌道周期相同的圓形軌道半徑為r,由萬有引力提供向心力可知爺7,

設(shè)近火點到火星中心的距離為Ri=R+di,設(shè)遠火點到火星中心的距離為R2=R+d2,橢圓軌

道半長軸為%&,由開普勒第三定律可知,=―—,由以上分析可得"2-6X107m,

故選C.

應素養(yǎng)提升練

12.若地球半徑為R,把地球看作質(zhì)量分布均勻的球體.“蛟龍?zhí)枴毕聺撋疃葹閐,“天宮

一號”軌道距離地面高度為h,“蛟龍”號所在處與“天宮一號”所在處的重力加速度大小

之比為(質(zhì)量分布均勻的球殼對內(nèi)部物體的萬有引力為零)()

A”d(R—嚀

R+h

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論