版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
數(shù)學(xué)理科本卷共60題,三種題型:選擇題、填空題和解答題。選擇題36小題,填空題8小題,解答題18小題。一、選擇題(36個小題)1.已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則集合SKIPIF1<0可以表示為()A.SKIPIF1<0B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0答案:B解析:有元素1,2的是SKIPIF1<0,分析選項則只有B符合。 2.集合SKIPIF1<0,則集合C中的元素個數(shù)為()A.3B.4C.11D.12答案:C解析:SKIPIF1<0,故選C。3.設(shè)集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:C解析:集合SKIPIF1<0,SKIPIF1<0。4.若SKIPIF1<0(其中SKIPIF1<0為虛數(shù)單位),則SKIPIF1<0等于()A.1B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:C解析:化簡得SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,故選C。5.若復(fù)數(shù)(為虛數(shù)單位)是純虛數(shù),則實數(shù)的值為()A. B. C. D.答案:A解析:SKIPIF1<0,所以SKIPIF1<0。6.復(fù)數(shù)SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限D(zhuǎn).第四象限答案:D解析:根據(jù)復(fù)數(shù)的運算可知SKIPIF1<0,所以復(fù)數(shù)的坐標(biāo)為SKIPIF1<0,所以正確選項為D。7.已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0() SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案:B解析:SKIPIF1<0,SKIPIF1<0。8.已知為的邊的中點,所在平面內(nèi)有一個點,滿足,則的值為()A.B.C.D.答案:C解析:如圖,四邊形是平行四邊形,D為邊BC的中點,所以D為邊的中點,的值為1。9.SKIPIF1<0中,SKIPIF1<0,AB=2,AC=1,D是邊BC上的一點(包括端點),則SKIPIF1<0?的取值范圍是()A. B. C.D.答案:D解析:∵D是邊BC上的一點(包括端點),∴可設(shè)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0的取值范圍是SKIPIF1<0。10.已知命題:,,命題:,,則下列說法中正確的是()A.命題是假命題B.命題是真命題C.命題是真命題D.命題是假命題答案:C解析:命題為真命題.對命題,當(dāng)SKIPIF1<0時,SKIPIF1<0,故為假命題,SKIPIF1<0為真命題.所以C正確。11.命題“SKIPIF1<0,SKIPIF1<0”的否定是()A.SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0答案:C解析:命題“SKIPIF1<0,SKIPIF1<0”是特稱命題,則它的否定是全稱命題,即SKIPIF1<0SKIPIF1<0。12.命題SKIPIF1<0:關(guān)于SKIPIF1<0的方程SKIPIF1<0有三個實數(shù)根;命題SKIPIF1<0:SKIPIF1<0;則命題SKIPIF1<0成立時命題SKIPIF1<0成立的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:B解析:由方程SKIPIF1<0,易知函數(shù)SKIPIF1<0是SKIPIF1<0上的奇函數(shù),由SKIPIF1<0的圖像可知,函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值是1,根據(jù)圖像的對稱性知函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為-1,又函數(shù)SKIPIF1<0的圖像與SKIPIF1<0軸有3個交點,那么原方程有3個實數(shù)根的充要條件是SKIPIF1<0,而SKIPIF1<0,所以選擇B。13.若某幾何體的三視圖如右圖所示,則此幾何體的體積等于()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<032324343233正視圖側(cè)視圖俯視圖答案:C解析:由三視圖可知,原幾何體是一個三棱柱被截去了一個小三棱錐得到的,如圖SKIPIF1<0,故選SKIPIF1<0。14.某幾何體的三視圖如圖所示,圖中三個正方形邊長均為2,則該幾何體的體積為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:D解析:由三視圖可知此幾何體是:棱長為2的正方體挖去了一個圓錐而形成的新幾何體,其體積為SKIPIF1<0,故選D。某幾何體的三視圖如圖所示,則該幾何體的體積為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:A解析:該幾何體是下面是一個三棱柱,上面是一個有一個側(cè)面垂直于底面的三棱錐。其體積為SKIPIF1<0。16.已知,滿足約束條件,若的最小值為,則() A. B. C. D.答案:B解析:依題意可以畫出不等式表示的圖形,當(dāng)過點SKIPIF1<0時取最小值,即2-2SKIPIF1<0=1,SKIPIF1<0=。17.已知SKIPIF1<0,若SKIPIF1<0的最小值是SKIPIF1<0,則SKIPIF1<0()A.1B.2C.3D.4答案:B解析:由已知得線性可行域如圖所示,則SKIPIF1<0的最小值為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0為最小值最優(yōu)解,∴SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0為最小值最優(yōu)解,不合題意,故選B。18.已知不等式組SKIPIF1<0構(gòu)成平面區(qū)域SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0是變量)。若目標(biāo)函數(shù)SKIPIF1<0的最小值為-6,則實數(shù)SKIPIF1<0的值為()A.SKIPIF1<0B.6C.3D.SKIPIF1<0答案:C解析:不等式組SKIPIF1<0表示的平面區(qū)域如圖陰影部分所示,因為SKIPIF1<0,故SKIPIF1<0??芍猄KIPIF1<0在C點處取得最小值,聯(lián)立SKIPIF1<0解得SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0。19.如圖給出的是計算SKIPIF1<0的值的程序框圖,其中判斷框內(nèi)應(yīng)填入的是()A.SKIPIF1<0?B.SKIPIF1<0?C.SKIPIF1<0?D.SKIPIF1<0?答案:B解析:由程序知道,SKIPIF1<0都應(yīng)該滿足條件,SKIPIF1<0不滿足條件,故應(yīng)該選擇B。20.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是()A.14 B.15 C.16 D.17答案:C解析:由程序框圖可知,從SKIPIF1<0到SKIPIF1<0得到SKIPIF1<0,因此將輸出SKIPIF1<0.故選C。21.執(zhí)行如圖所示的程序框圖,若輸入SKIPIF1<0的值為SKIPIF1<0,則輸出的SKIPIF1<0的值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:B解析:第一次運行時,SKIPIF1<0;第二次運行時,SKIPIF1<0;第三次運行時,SKIPIF1<0;第四次運行時,SKIPIF1<0;第五次運行時,SKIPIF1<0;…,以此類推,直到SKIPIF1<0,程序才剛好不滿足SKIPIF1<0,故輸出SKIPIF1<0.故選B。22.已知SKIPIF1<0、SKIPIF1<0取值如下表:SKIPIF1<001456SKIPIF1<01.3SKIPIF1<0SKIPIF1<05.67.4畫散點圖分析可知:SKIPIF1<0與SKIPIF1<0線性相關(guān),且求得回歸方程為SKIPIF1<0,則SKIPIF1<0的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.8答案:C解析:將SKIPIF1<0代入回歸方程為SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即精確到0.1后SKIPIF1<0的值為SKIPIF1<0.故選C。23.如圖是2013年某大學(xué)自主招生面試環(huán)節(jié)中,七位評委為某考生打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和眾數(shù)依次為()A.85,84 B.84,85C.86,84 D.84,86答案:A解析:去掉一個最高分和一個最低分后,所剩數(shù)據(jù)為84,84,86,84,87,平均數(shù)為SKIPIF1<0,眾數(shù)為84.故選A。24.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了SKIPIF1<0個同學(xué)進行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在SKIPIF1<0(單位:元),其中支出在SKIPIF1<0(單位:元)的同學(xué)有67人,其頻率分布直方圖如圖所示,則SKIPIF1<0的值為()A.100B.120C.130D.390答案:A解析:支出在SKIPIF1<0的同學(xué)的頻率為SKIPIF1<0,SKIPIF1<0。25.若SKIPIF1<0,SKIPIF1<0是第三象限的角,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:B解析:由題意SKIPIF1<0,因為SKIPIF1<0是第三象限的角,所以SKIPIF1<0,因此SKIPIF1<0。26.在SKIPIF1<0中,若SKIPIF1<0的形狀一定是()A.等邊三角形 B.不含SKIPIF1<0的等腰三角形 C.鈍角三角形 D.直角三角形答案:D解析:∵sin(A-B)=1+2cos(B+C)sin(A+C),∴sin(A-B)=1-2cosAsinB,
∴sinAcosB-cosAsinB=1-2cosAsinB,∴sinAcosB+cosAsinB=1,
∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形。27.已知SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:A解析:結(jié)合特殊值,求解三角函數(shù)的遞減區(qū)間,并驗證結(jié)果.取SKIPIF1<0,SKIPIF1<0,其減區(qū)間為SKIPIF1<0SKIPIF1<0,顯然SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,排除SKIPIF1<0;取SKIPIF1<0,SKIPIF1<0,其減區(qū)間為SKIPIF1<0SKIPIF1<0,顯然SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,排除SKIPIF1<0.選SKIPIF1<0。28.函數(shù)SKIPIF1<0SKIPIF1<0的最小正周期為SKIPIF1<0,為了得到SKIPIF1<0的圖象,只需將函數(shù)SKIPIF1<0的圖象()A.向左平移SKIPIF1<0個單位長度 B.向右平移SKIPIF1<0個單位長度 C.向左平移SKIPIF1<0個單位長度 D.向右平移SKIPIF1<0個單位長度答案:C解析:因為函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,則用SKIPIF1<0換x即可得到SKIPIF1<0的圖像,所以向左平移SKIPIF1<0個單位長度,則選C。29.在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0是SKIPIF1<0邊上的一點,SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的長為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:D解析:因為SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.在SKIPIF1<0中,由余弦定理SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,由正弦定理可知SKIPIF1<0,可得SKIPIF1<0。30.已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,最小值為SKIPIF1<0,將函數(shù)SKIPIF1<0的圖像向左平移SKIPIF1<0(SKIPIF1<0>0)個單位后,得到的函數(shù)圖形的一條對稱軸為SKIPIF1<0,則SKIPIF1<0的值不可能為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0答案:B解析:SKIPIF1<0,依題意,SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0。將函數(shù)SKIPIF1<0的圖片向左平移SKIPIF1<0(SKIPIF1<0>0)個單位后得到SKIPIF1<0,因為函數(shù)SKIPIF1<0的一條對稱軸為SKIPIF1<0。故SKIPIF1<0,解得SKIPIF1<0,觀察可知,選B。31.已知雙曲線SKIPIF1<0SKIPIF1<0的離心率為SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案:B解析:依題意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0。32.如圖過拋物線SKIPIF1<0的焦點F的直線依次交拋物線及準(zhǔn)線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()A.SKIPIF1<0SKIPIF1<0 BSKIPIF1<0SKIPIF1<0C.SKIPIF1<0SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0答案:D解析:如圖分別過點A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點E,D,設(shè)|BF|=a,則由已知得:|BC|=2a,由定義得:|BD|=a,故∠BCD=30°,
在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,從而得a=1,∵BD∥FG,∴SKIPIF1<0,求得p=SKIPIF1<0,因此拋物線方程為y2=3x。33.橢圓M:SKIPIF1<0左右焦點分別為SKIPIF1<0,SKIPIF1<0,P為橢圓M上任一點且SKIPIF1<0SKIPIF1<0最大值取值范圍是SKIPIF1<0,其中SKIPIF1<0,則橢圓離心率e取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案:B解析:由橢圓定義知SKIPIF1<0,SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0而SKIPIF1<0SKIPIF1<0最大值取值范圍是SKIPIF1<0,所以SKIPIF1<0于是得到SKIPIF1<0,故橢圓的離心率的取值范圍是SKIPIF1<0,選B。34.已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的大致圖像為()答案:A解析:由函數(shù)的奇偶性可知函數(shù)為非奇非偶函數(shù),所以排除B,C,再令SKIPIF1<0,說明當(dāng)x為負值時,有小于零的函數(shù)值,所以排除D。35.已知函數(shù)SKIPIF1<0,則關(guān)于SKIPIF1<0的方程SKIPIF1<0的實根個數(shù)不可能為()A.SKIPIF1<0個B.SKIPIF1<0個C.SKIPIF1<0個D.SKIPIF1<0個答案:A解析:因為SKIPIF1<0時,SKIPIF1<0=1或SKIPIF1<0=3或SKIPIF1<0=SKIPIF1<0或SKIPIF1<0=-4,則當(dāng)a=1時SKIPIF1<0或1或3或-4,又因為SKIPIF1<0,則當(dāng)SKIPIF1<0時只有一個SKIPIF1<0=-2與之對應(yīng)其它情況都有兩個SKIPIF1<0值與之對應(yīng),所以此時所求方程有7個根,當(dāng)1<a<2時因為函數(shù)SKIPIF1<0與y=a有4個交點,每個交點對應(yīng)兩個SKIPIF1<0,則此時所求方程有8個解,當(dāng)a=2時函數(shù)SKIPIF1<0與y=a有3個交點,每個交點對應(yīng)兩個SKIPIF1<0,則此時所求方程有6個解,所以B,C,D都有可能,則選A。36.設(shè)定義在D上的函數(shù)SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,當(dāng)SKIPIF1<0時,若SKIPIF1<0在D內(nèi)恒成立,則稱P為函數(shù)SKIPIF1<0的“類對稱點”,則SKIPIF1<0的“類對稱點”的橫坐標(biāo)是()A.1B.SKIPIF1<0C.eD.SKIPIF1<0答案:B解析:由于SKIPIF1<0,則在點P處切線的斜率SKIPIF1<0SKIPIF1<0.所以切線方程為SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0從而有SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0從而有SKIPIF1<0時,SKIPIF1<0;所以在SKIPIF1<0上不存在“類對稱點”.當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù),故SKIPIF1<0所以SKIPIF1<0是一個類對稱點的橫坐標(biāo).(可以利用二階導(dǎo)函數(shù)為0,求出SKIPIF1<0,則SKIPIF1<0。二、填空題(12個小題)37.二項式SKIPIF1<0的展開式中的常數(shù)項是________.答案:45解析:SKIPIF1<0,則SKIPIF1<0,故常數(shù)項為SKIPIF1<0。38.有4名優(yōu)秀學(xué)生SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0全部被保送到甲,乙,丙3所學(xué)校,每所學(xué)校至少去一名,則不同的保送方案共有種.答案:36解析:先從4名優(yōu)秀學(xué)生SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中選出2名保送到甲,乙,丙3所學(xué)校中的某一所,有SKIPIF1<0種方案;然后將剩余的2名優(yōu)秀學(xué)生保送到剩余的2所學(xué)校,有SKIPIF1<0種方案;故不同的保送方案共有SKIPIF1<0種。39.設(shè)SKIPIF1<0,則二項式SKIPIF1<0展開式中含項的系數(shù)是_____答案:-192解析:由于SKIPIF1<0則SKIPIF1<0含項的系數(shù)為SKIPIF1<0。40.如圖,設(shè)SKIPIF1<0是圖中邊長為4的正方形區(qū)域,SKIPIF1<0是SKIPIF1<0內(nèi)函數(shù)SKIPIF1<0圖象下方的點構(gòu)成的區(qū)域.在SKIPIF1<0內(nèi)隨機取一點,則該點落在SKIPIF1<0中的概率為。答案:SKIPIF1<0解析:由幾何概型得,該點落在SKIPIF1<0中的概率為SKIPIF1<0。41.隨機向邊長為5,5,6的三角形中投一點P,則點P到三個頂點的距離都不小于1的概率是。答案:SKIPIF1<0解析:分別以三角形的三個頂點為圓心,1為半徑作圓,則在三角形內(nèi)部且在三圓外部的區(qū)域即為與三角形三個頂點距離不小于1的部分,即SKIPIF1<0。42.一個三位自然數(shù)百位,十位,個位上的數(shù)字依次為a,b,c,當(dāng)且僅當(dāng)有兩個數(shù)字的和等于第三個數(shù)字時稱為“有緣數(shù)”(如213,134等),若SKIPIF1<0,且a,b,c互不相同,則這個三位數(shù)為”有緣數(shù)”的概率是_________。答案:SKIPIF1<0解析:由1,2,3組成的三位自然數(shù)為123,132,213,231,312,321,共6個;同理由1,2,4組成的三位自然數(shù)共6個;由1,3,4組成的三位自然數(shù)也是6個;由2,3,4組成的三位自然數(shù)也是6個.所以共有6+6+6+6=24個.由1,2,3組成的三位自然數(shù),共6個”有緣數(shù)”.由1,3,4組成的三位自然數(shù),共6個”有緣數(shù)”.所以三位數(shù)為”有緣數(shù)”的概率SKIPIF1<0。43.SKIPIF1<0是同一球面上的四個點,其中SKIPIF1<0是正三角形,SKIPIF1<0⊥平面SKIPIF1<0,SKIPIF1<0,則該球的表面積為_________。答案:32SKIPIF1<0解析:由題意畫出幾何體的圖形如圖,把A、B、C、D擴展為三棱柱,上下底面中心連線的中點與A的距離為球的半徑,AD=4,AB=2SKIPIF1<0,△ABC是正三角形,所以AE=2,AO=2SKIPIF1<0。所求球的表面積為:4SKIPIF1<0(2SKIPIF1<0)2=32SKIPIF1<0。44.底面是正多邊形,頂點在底面的射影是底面中心的棱錐叫正棱錐.如圖,半球內(nèi)有一內(nèi)接正四棱錐SKIPIF1<0,該四棱錐的體積為SKIPIF1<0,則該半球的體積為。答案:SKIPIF1<0SKIPIF1<0解析:設(shè)所給半球的半徑為SKIPIF1<0,則棱錐的高SKIPIF1<0,底面正方形中有SKIPIF1<0,所以其體積SKIPIF1<0,則SKIPIF1<0,于是所求半球的體積為SKIPIF1<0。45.已知四棱錐SKIPIF1<0中,底面SKIPIF1<0為矩形,且中心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則該四棱錐的外接球的體積為。答案:SKIPIF1<0解析:因為SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0;同理,SKIPIF1<0;將四棱錐SKIPIF1<0補成一個長方體,可知該長方體的長寬高分別為SKIPIF1<0,故所求外接球的半徑SKIPIF1<0,其體積SKIPIF1<0。46.已知等差數(shù)列SKIPIF1<0前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的公差為。答案:2解析:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0。47.已知SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項和,且滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0。答案:2×31007﹣2解析:由anan+1=3n,得SKIPIF1<0,∴SKIPIF1<0,則數(shù)列{an}的所有奇數(shù)項和偶數(shù)項均構(gòu)成以3為公比的等比數(shù)列,又SKIPIF1<0.∴SKIPIF1<0。48.已知數(shù)列SKIPIF1<0的前n項和SKIPIF1<0,若不等式SKIPIF1<0對SKIPIF1<0恒成立,則整數(shù)SKIPIF1<0的最大值為。答案:4解析:當(dāng)SKIPIF1<0時,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,兩式相減得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0。又SKIPIF1<0,所以數(shù)列SKIPIF1<0是以2為首項,1為公差的等差數(shù)列,SKIPIF1<0,即SKIPIF1<0。因為SKIPIF1<0,所以不等式SKIPIF1<0,等價于SKIPIF1<0。記SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0。所以SKIPIF1<0時,SKIPIF1<0。所以SKIPIF1<0,所以整數(shù)SKIPIF1<0的最大值為4。三、解答題(18個小題)49.在SKIPIF1<0中,內(nèi)角SKIPIF1<0的對邊分別為SKIPIF1<0已知SKIPIF1<0.(I)求SKIPIF1<0的值;(II)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積SKIPIF1<0。解:(Ⅰ)由正弦定理,得SKIPIF1<0所以SKIPIF1<0即SKIPIF1<0,化簡得SKIPIF1<0,即SKIPIF1<0因此SKIPIF1<0(Ⅱ)由SKIPIF1<0的SKIPIF1<0由SKIPIF1<0及SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,因此SKIPIF1<0又SKIPIF1<0所以SKIPIF1<0,因此SKIPIF1<050.在△ABC中,a,b,c是其三個內(nèi)角A,B,C的對邊,且SKIPIF1<0.(Ⅰ)求角C的大小;(Ⅱ)設(shè)SKIPIF1<0,求△ABC的面積S的最大值。解:(Ⅰ)∵SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,或SKIPIF1<0,由SKIPIF1<0,知SKIPIF1<0,所以SKIPIF1<0不可能成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0(Ⅱ)由(Ⅰ),SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0即△ABC的面積S的最大值為SKIPIF1<051.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,其前SKIPIF1<0項的和為SKIPIF1<0,且滿足SKIPIF1<0SKIPIF1<0.(Ⅰ)求證:數(shù)列SKIPIF1<0是等差數(shù)列;(Ⅱ)證明:當(dāng)SKIPIF1<0時,SKIPIF1<0.解:(Ⅰ)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0構(gòu)成以1為首項,2為公差的等差數(shù)列.(Ⅱ)由(1)可知,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0.從而SKIPIF1<0。52.第117屆中國進出品商品交易會(簡稱2015年春季廣交會)將于2015年4月15日在廣州舉行,為了搞好接待工作,組委會在廣州某大學(xué)分別招募8名男志愿者和12名女志愿者,現(xiàn)將這20名志愿者的身高組成如下莖葉圖(單位:cm),若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”。(1)計算男志愿者的平均身高和女志愿者身高的中位數(shù)(保留一位小數(shù))。(2)若從所有“高個子”中選3名志愿者,用SKIPIF1<0表示所選志愿者中為女志愿者的人數(shù),試寫出SKIPIF1<0的分布列,并求SKIPIF1<0的數(shù)學(xué)期望。解:(1)根據(jù)莖葉圖可得:男志愿者的平均身高為SKIPIF1<0女志愿者身高的中位數(shù)為SKIPIF1<0(2)由莖葉圖可知,“高個子”有8人,“非高個子”有12人,而男志愿者的“高個子”有5人,女志愿者的“高個子”有3人SKIPIF1<0的可能值為0,1,2,3,故SKIPIF1<0SKIPIF1<0即SKIPIF1<0的分布列為:SKIPIF1<00123PSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0的數(shù)學(xué)期望SKIPIF1<053.某學(xué)校從參加2015年迎新百科知識競賽的同學(xué)中,選取40名同學(xué),將他們的成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題。
(Ⅰ)求分數(shù)在記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.解:(Ⅰ)設(shè)分數(shù)在SKIPIF1<0內(nèi)的頻率為SKIPIF1<0,根據(jù)頻率分布直方圖,則有SKIPIF1<0,可得SKIPIF1<0,所以頻率分布直方圖如圖所示.(Ⅱ)平均分:SKIPIF1<0(Ⅲ)學(xué)生成績在SKIPIF1<0的有SKIPIF1<0人,在SKIPIF1<0的有SKIPIF1<0人,并且SKIPIF1<0的可能取值是0,1,2。SKIPIF1<0,SKIPIF1<0;SKIPIF1<0。所以SKIPIF1<0的分布列為SKIPIF1<0012SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0。54.某市工業(yè)部門計劃度所轄中小型工業(yè)企業(yè)推行節(jié)能降耗技術(shù)改造,對所轄企業(yè)是否支持改造進行問卷調(diào)查,結(jié)果如下表:支持不支持合計中型企業(yè)8040120小型企業(yè)240200440合計320240560(Ⅰ)能否在犯錯誤的概率不超過0.025的前提下認為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)模”有關(guān)?(Ⅱ)從上述320家支持節(jié)能降耗改造的中小企業(yè)中按分層抽樣的方法抽出12家,然后從這12家中選出9家進行獎勵,分別獎勵中、小企業(yè)每家50萬元、10萬元。記SKIPIF1<0表示所發(fā)獎勵的錢數(shù),求SKIPIF1<0的分布列和數(shù)學(xué)期望:附:SKIPIF1<0SKIPIF1<00.0500.0250.010SKIPIF1<03.8415.0246.635解:(Ⅰ)K2=eq\f(560(80×200-40×240)2,120×440×320×240)≈5.657,因為5.657>5.024,所以能在犯錯概率不超過0.025的前提下認為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)模”有關(guān). (Ⅱ)由(Ⅰ)可知“支持”的企業(yè)中,中小企業(yè)家數(shù)之比為1:3,按分層抽樣得到的12家中,中小企業(yè)分別為3家和9家.設(shè)9家獲得獎勵的企業(yè)中,中小企業(yè)分別為m家和n家,則(m,n)可能為(0,9),(1,8),(2,7),(3,6).與之對應(yīng),X的可能取值為90,130,170,210. P(X=90)=eq\f(C\o(3,0)C\o(9,9),C\o(12,9))=eq\f(1,220),P(X=130)=eq\f(C\o(3,1)C\o(9,8),C\o(12,9))=eq\f(27,220),P(X=170)=eq\f(C\o(3,2)C\o(9,7),C\o(12,9))=eq\f(108,220),P(X=210)=eq\f(C\o(3,3)C\o(9,6),C\o(12,9))=eq\f(84,220), 分布列如下:X90130170210Peq\f(1,220)eq\f(27,220)eq\f(108,220)eq\f(84,220)期望E(X)=90×eq\f(1,220)+130×eq\f(27,220)+170×eq\f(108,220)+210×eq\f(84,220)=180。55.如圖,四棱錐SKIPIF1<0,側(cè)面SKIPIF1<0是邊長為SKIPIF1<0的正三角形,且與底面垂直,底面SKIPIF1<0是SKIPIF1<0SKIPIF1<0的菱形,SKIPIF1<0為棱SKIPIF1<0上的動點,且SKIPIF1<0(SKIPIF1<0)。(Ⅰ)求證:SKIPIF1<0;(Ⅱ)試確定SKIPIF1<0的值,使得二面角SKIPIF1<0的平面角余弦值為SKIPIF1<0。解:(Ⅰ)取SKIPIF1<0中點SKIPIF1<0,連結(jié)SKIPIF1<0,依題意可知△SKIPIF1<0,△SKIPIF1<0均為正三角形,PABCDMOxyz所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,PABCDMOxyz所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0。(Ⅱ)由(Ⅰ)可知SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.以SKIPIF1<0為原點,建立空間直角坐標(biāo)系SKIPIF1<0如圖所示,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0可得點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,顯然平面SKIPIF1<0的一個法向量為SKIPIF1<0,依題意SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以,當(dāng)SKIPIF1<0時,二面角SKIPIF1<0的余弦值為SKIPIF1<0.56.如圖,直三棱柱ABC-A1B1C1中,AC=BC=SKIPIF1<0AA1,D是棱AA1的中點,DC1⊥BD.(I)證明:DC1⊥BC;(II)求二面角A1-BD-C1的大?。猓海↖)證明:由題設(shè)知,三棱柱的側(cè)面為矩形.由于D為AA1的中點,故DC=DC1.又SKIPIF1<0,可得DC12+DC2=CC12,所以DC1⊥DC.而DC1⊥BD,DC∩BD=D,所以DC1⊥平面BCD.BCSKIPIF1<0平面BCD,故DC1⊥BC.(II)由(I)知BC⊥DC1,且BC⊥CC1,則BC⊥平面ACC1,所以CA,CB,CC1兩兩相互垂直.以C為坐標(biāo)原點,SKIPIF1<0的方向為x軸的正方向,SKIPIF1<0為單位長,建立如圖所示的空間直角坐標(biāo)系C-xyz.由題意知A1(1,0,2),B(0,1,0),D(1,0,1),C1(0,0,2).則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0是平面A1B1BD的法向量,則SKIPIF1<0,即SKIPIF1<0,可取n=(1,1,0).同理,設(shè)m是平面C1BD的法向量,SKIPIF1<0可取m=(1,2,1).SKIPIF1<0.故二面角A1-BD-C1的大小為30°57.已知某幾何體的直觀圖和三視圖如下圖所示,其中正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.(I)求證:SKIPIF1<0平面SKIPIF1<0;(II)設(shè)SKIPIF1<0為直線SKIPIF1<0與平面SKIPIF1<0所成的角,求SKIPIF1<0的值;(Ⅲ)設(shè)SKIPIF1<0為SKIPIF1<0中點,在SKIPIF1<0邊上求一點SKIPIF1<0,使SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0的值.解:(I)證明∵該幾何體的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,∴SKIPIF1<0兩兩垂直。且SKIPIF1<0,以BA,BB1,BC分別為SKIPIF1<0軸建立空間直角坐標(biāo)系,如圖則N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4)∵SKIPIF1<0=(4,4,0)·(-4,4,0)=-16+16=0SKIPIF1<0=(4,4,0)·(0,0,4)=0∴BN⊥NB1,BN⊥B1C1且NB1與B1C1相交于B1,∴BN⊥平面C1B1N;(II)設(shè)SKIPIF1<0為平面SKIPIF1<0的一個法向量,則SKIPIF1<0SKIPIF1<0則SKIPIF1<0(Ⅲ)∵M(2,0,0).設(shè)P(0,0,a)為BC上一點,則SKIPIF1<0,∵MP//平面CNB1,∴SKIPIF1<0又SKIPIF1<0,∴當(dāng)PB=1時MP//平面CNB1SKIPIF1<058.橢圓SKIPIF1<0SKIPIF1<0的離心率為SKIPIF1<0,其左焦點到點SKIPIF1<0的距離為SKIPIF1<0.(I)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;F2OxyPABF1A2l(II)若直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(SKIPIF1<0不是左右頂點),且以SKIPIF1<0為直徑的圓過橢圓SKIPIF1<0的右頂點,求證:直線SKIPIF1<0過定點,并求出該定點的坐標(biāo).F2OxyPABF1A2l解:(I)由題:SKIPIF1<0①左焦點(-c,0)到點P(2,1)的距離為:d=EQ\R((2+c)2+12)=EQ\R(10)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海工會管理職業(yè)學(xué)院《圖形與圖像處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 網(wǎng)絡(luò)管理員技能鑒定測試題(附參考答案)
- 幼兒園冬至集體課程設(shè)計
- 聲樂培訓(xùn)行業(yè)發(fā)展趨勢報告
- 早教數(shù)理課特色課程設(shè)計
- 電氣工程師供配電練習(xí)
- 加強中小學(xué)科學(xué)實驗教學(xué)的實效性
- 廣西xx工業(yè)廢鹽資源化利用項目可行性研究報告
- 平安夜圣誕節(jié)介紹活動方案326
- 未來救護車課程設(shè)計
- 【MOOC】中西文化對比與交流-中南大學(xué) 中國大學(xué)慕課MOOC答案
- 數(shù)學(xué)建模案例分析--線性代數(shù)建模案例(20例)
- 市場營銷之4P策略(課堂PPT)
- 中藥材生產(chǎn)管理質(zhì)量管理文件目錄
- 框架柱+剪力墻工程施工鋼筋綁扎安裝施工過程
- 蘇州預(yù)防性試驗、交接試驗費用標(biāo)準(zhǔn)
- 最新【SD高達G世紀-超越世界】各強力機體開發(fā)路線
- 泡沫混凝土安全技術(shù)交底
- 完整MAM-KY02S螺桿空壓機控制器MODBUSⅡ通信協(xié)議說明
- 《納米材料工程》教學(xué)大綱要點
- 長春市勞動合同樣本(共10頁)
評論
0/150
提交評論