第51課 異面直線_第1頁
第51課 異面直線_第2頁
第51課 異面直線_第3頁
第51課 異面直線_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第六單元.6.2.2《異面直線》教案授課題目6.2.2異面直線授課課時1課型新授教學目標知識與技能①理解異面直線的概念,異面直線所成的角的概念.②求解正方體和長方體中異面直線所成的角.過程與方法借助立交橋模型引入空間中直線與直線的位置關(guān)系和異面直線的概念.情感、態(tài)度與價值觀①通過學習異面直線和異面直線所成角的概念培養(yǎng)學生空間抽象能力.②通過本節(jié)學習和運用實踐,培養(yǎng)學生空間想象能力和邏輯思維能力.教學重難點教學重點:空間中直線與直線的位置關(guān)系,異面直線的概念.教學難點:求解異面直線所成的角.教學過程教學活動學生活動設計思路情景引入(1)思考:觀察立交橋所在直線的位置關(guān)系如何?理解情景,思考問題從實際問題出發(fā),自然引入空間中兩直線位置關(guān)系.抽象概括(1)概念形成空間中直線與直線的位置關(guān)系①共面直線:相交直線和平行直線②異面直線:在同一個平面內(nèi)沒有公共點.歸納概述由具體語句抽象概況出概念,對照實例,學生易于理解例題(1)如圖,已知正方體ABCD-A1B理解,思考問題,運用空間中直線的位置關(guān)系解答.通過例題加深空間中兩直線位置關(guān)系的理解,同時引入異面直線所成角的概念.講授新知異面直線所成的角:異面直線a和b,在空間任取一點P,過P分別作a和b的平行線a'和則直線a'和b理解,抽象,概括通過例一引入異面直線所成角的概念,水道渠成.例題(2)例2如圖6-26所示,在正方體ABCD-A'B'C'D'中,圖6-26(1)哪些棱所在的直線與直線BA'是異面直線?(2)直線BA'與CC'的夾角是多少?(3)哪些棱所在的直線與直線AA'垂直?圖6-26例3、在正方體ABCD?A(1)A1B與CB(2)A1B1(3)A1C1與圖6-27理解,思考問題,運用空間中直線的位置關(guān)系解答.通過例題加深空間中兩直線位置關(guān)系的理解,同時引入異面直線所成角的概念.例4如圖6-27所示,在正方體ABCD?A1B1C1D1中,E,F,G,H分別為AA理解,思考問題,運用空間中直線的位置關(guān)系解答.通過例題加深空間中兩直線位置關(guān)系的理解,同時引入異面直線所成角的概念.鞏固練習1.下列結(jié)論正確的是().A.分別在兩個平面內(nèi)的直線是異面直線B.沒有公共點的直線是平行直線C.兩條垂直直線必定相交D.不同在任何一個平面內(nèi)的兩條直線是異面直線2.兩條異面直線所成的角的范圍是()..A.(0°,90)B.(0°,90°]C.[0°,90)D.[0°,90°]3.空間兩條直線的位置關(guān)系有、。4已知正方體ABCD-A’B’C’D’的棱長為a,求下列異面直線所成的角的大?。和瓿删毩曂ㄟ^練習讓學生得到對知識更深刻的認識.小結(jié)七、課堂小結(jié)①異面直線的概念,②異面直線所成的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論