中國移動(dòng)研究院張昊在CNCF上的演講:Consideration of AI based Telecom Network_第1頁
中國移動(dòng)研究院張昊在CNCF上的演講:Consideration of AI based Telecom Network_第2頁
中國移動(dòng)研究院張昊在CNCF上的演講:Consideration of AI based Telecom Network_第3頁
中國移動(dòng)研究院張昊在CNCF上的演講:Consideration of AI based Telecom Network_第4頁
中國移動(dòng)研究院張昊在CNCF上的演講:Consideration of AI based Telecom Network_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

ConsiderationofAIbasedTelecomNetwork

ZhangHao

ChinaMobile

2024.3

2

ChinaMobileistheworld'sleadingcommunicationsserviceprovider

Networkscaleranks

1stintheworld

2023

1.9+

million

2023

370

million

Householdswithgigabitcoverage

5Gbasestations

Customerscaleranks

1stintheworld

2023

3.19

billion

1.69

Connections

(things)billion

Total

connections

2023

Incomescaleranks

1stintheworld

2023.10

Operatingrevenue

139,597

million

2023

Profit

14.718

billion

Threerevolutionstagesofcommunicationnetworks

NetworkIP-lisedrevolution

NetworkIT-lised

NetworkAI-lisedrevolution

revolution

2000s2010s2020s2030s

Narrowbanddigitalvoice

low-speeddata

High-speeddatainbroadbanddigitalvoice

Peopletopeople--Peopletothings--ThingstothingsCommunicationsInternetserviceprovider

Intelligence,universalconnectivity,elemental

Businessdemand

Technicalfeatures

Typicaltechnology

ExplosivegrowthinInternetbandwidth

andsubscribernumbers.Transformation

fromsinglevoiceservicetoconverged

service.

Fromcircuitswitchingtopacket

switching

FromswitchingIPtoend-to-endfullIP

IP、MPLS、SRv6

PTN

Softswitch、IMS、VoLTE

Growingdemandforbusiness

diversityandresilience

ITrapidlychangingtheshape

ofthenetwork.

FromClosedNetworkstoOpen

Business

FromRigiditytoResilience

SDN

NFV

SBA

convergence

AINeedsNetworksforEfficient

CommunicationPerformance.

NetworksneedAItoenhancehigher-order

self-intelligencecapabilities

NetworkforAI

AIforNetwork、AINative

RoCE、NVLink、GSE

MLOps

FederalLearning

3

Communicationnetworkispromptingthenewinformationtechnologytoallareasofdeeppenetration

4

Theeraofuniversalintelligencerequires

efficientcommunicationperformanceof

networks.

Majorshiftfrommobilecommunicationstomobileinformationservices

Intelligent

computing

infrastructure’s

enhancement

NetworkforAI

StrengtheningComputibilitywithNetworks

DistributedtrainingofGPUclustersbringsalarge

amountofcommunicationoverhead,andnetwork

performancebecomesabottleneckrestrictingAI

arithmeticenhancement

WideAreaServiceUniversality

Intelligence

Inclusive

Ubiquitous

Network

intelligence

generatednatively

AINative

AIgeneratednatively

The6Gmobileinformationnetworkwillprovide

thewholeprocessofinformationflowservices,

achievingthebasicplatformofAIubiquityand

universality.

Majorrequirementsandchallengesofnetworkintelligence

TheconvergenceofnetworkandAIincludestwoaspects:"networkenablesAI"and"AIempowers

network".ThefirstistoprovideanuniversalaccesstoAIservices.ThesecondisAI-enablednetworks

toimprovenetworkoperationandO&Mefficiency.

Networksneedtobequicklyadaptedto

thecustomisedrequirementsofdiverse

scenarios

Networkcomplexity

increasesfrom

generationto

generation

AIfornetwork

Operationsandmaintenance

AIisthekeypathtomeetthenewmetricsof

mobilecommunicationnetworks,empowering

networkstoimprovenetworkoperation

efficiency.

Morecomprehensive

networkperformance

measures

5

AIforNetwork:Twomajorscenarios

Byextractingtheregularfeaturesofdataincomplexscenarios,

AIcanhelpthetelecomnetworkimproveefficiencyinmaintenanceandoperationscenarios

NetworkMaintenance

Aroundtheentirelifecycleofnetworkplanning,

construction,maintenance,optimization,and

operation,AIoptimizestheprocesstoachievethe

costreductionandefficiencyenhancement

AIreplacinghuman

Offline

analyzing

Lowercost

Richscenarios

Centralized

data

Maintenance+AI

Unifieddatainterface

Lowerpowerconsumption

NetworkOperation

AIreconstructsthenetworkoperationprocessto

achievethebestmatchingofnetworkresources,operatingefficiencyanduserexperience

Simplescenario

Discretedata

Poordata

standardization

Lowerpowerconsumption

AIreplacingequipment

Onlineprocessing

Operation+AI

Lowercost

6

ProcedureIntegration

AIforNetwork:Intelligentnetworkmaintenance

AsglobaloperatorscontinuetoevolvetowardsL4orhigher-levelAutonomousNetworks(ANs),

networkmaintenancemodeupgradesfromautomationtointelligence.AnintelligentsystemwithAI

modelsisbecomingthetrendoffuturetelecomnetworkmaintenance.

Theintelligentnetworkmaintenancesystem

Visualization

?VisualizationofFCAPSdata

?Visualizationofnetworktopology

IntelligentGuidance

?SmartQ&A

?Onboardingguidance

RoutineMaintenance

?In-depthinspection

?Healthassessment

FundamentalNetworkModels&Tools

SpecializedModels(Alarm/Log/Perf/…)

AutomationTools(SI/Config/Visualize)

ICTLargeLanguageModel

ModelOptimizationforICTScenario

ICTPrivateDomainKnowledgeData

LargeLanguageModel(LLM)Base

FaultDiagnosis

?Hiddendangerprediction

?Intelligentrootcaseanalysis

KeepLive&Recovery

?Disasterrecoveryassessment

?Automaticexecution

NetworkOptimization

?QualityImprovement

?Energyefficiencyoptimization

Visualizing

RegionalLevel

ApplicationLevel

UELevel

......

7

NSSF

ADRF

NEF

PCF

UDR

AF

Nudr

Nnef

NnwdafNaf

Npcf

Nssf

Nadrf

AMF

OAM

SMF

MFAF

UPF

RAN

Observing

Applicationtype

Serviceexperience

data

RANloadstatus

Controling

QOSAssurance

SneakerMarketing

......

AIforNetwork:Intelligentnetworkoperation

NWDAF(NetworkDataAnalyticsFunction)isintroducedtorealizeoptimalmatchofnetworkresource,

achievingthehighestnetworkefficiencyandbetteruserexperience.

Architecture

TypicalCase

NWDAF

NoamNamfNsmfNupfNdccfNmfaf

DCCf

N4

UE

NWDAFbasednetworkoperationintelligence

?ServiceRegistration:Servicearea,AnalyticsID.

?Datacollection:5GCNF、AF、OAM,real-timecustomizedcollection.

?AI/MLtraining:Providemachinelearningmodels.

?Inferenceperforming:Prediction/statistics/recommendation.

?AnalyticsFeedback:consumerdecision/action.

Initiation

Recognition

Perception&Identification

AI

Inspection

Action

Decision

Calculating

KPIstatistics

Sneaker

QoEexperience

......

8

AIforNetwork:Fourmainissues

Issue1:DifficultyinSceneIdentification

EnablingScenarios

Support

Drive

Issue3:Thedispersionofmodel

Issue2:Poordataquality

___________Data

Network

Availability

AIModel________________

Construct

Issue4:Weaknetworkusability

Computility

Cloud

+production-orientedAI

Corenetwork

+production-orientedAI

Wirelessnetwork

+production-orientedAI

Terminal

+production-orientedAI

9

NetworkforAI:Networkstrengthenscomputility,supporting

Management

Applicationservice

PaaS

Software

platform

Hardware

resource

SSD

Convergedstorage

Block/File/ObjectStorage

High-performancestorage

HDD

RoCEv2

GSE

IB

Losslessnetwork

?Diversecomputility:ProvideAsPU、NPUAIintelligentcomputility

?High-performancestorage:FacilitatesAImodeltraining

?Losslessnetwork:ImprovetheefficiencyofAIclusters

?Softwareplatform:Unifiedmanagement,schedulingandabstractionforheterogeneousresources

AIdevelopment

BuildAIinfrastructure,provideAIcomputilityexposurecapabilitiesandempowerAIapplications.

Computilitynetworkmanagement,orchestrationandscheduling

Managementintelligence

O&Mmanagement

CoreNetwork

EPC/5GC/IMSsystem

Real-timetranslation

Digitalhumans

AIApplication

Fraud

prevention

Smart

recommendation

Modelasaservice

Basicmodel

Network

intelligence

G-PaaSA-PaaS

DB

LB

ServiceMesh

CI/CDpineline

Image

processing

Videoanalytics

Encryptdecrypt

Codecs

Unifiedmanagement,schedulingandabstractionplatformforhyperscaleheterogeneousresources

Ultra-lightweightvirtuz容aion

VMBMcontainer

Computilitynative

Cross-architecturecomputilityintegration

GPUpoolingMemorypooling

Computilitypooling

Diversecomputility

GPU

X86_64/ARM/RISC-V

DPUSmartNIC

DPU

NPUDSA

GP

U

CPU

①Infrastructurefor

②NetworkcapabilitiesforAI

?UbiquitousAIservices:AIvalue-addedservicesareprovidedbasedontheubiquity、mobilityfeaturesoftelecommunicationnetworks

?Modelservice:GeneratenetworkmodelsbasedonnetworkdataandprovideMaaSservice

ServiceEnablingLayer

ExternalAIService

Synaesthesia

Service

Taskdecompositioncapability+serviceorchestrationcapability

ComputingService

InternalAIService

ServiceFunctionLayer

Data

Plane

ComputingPlane

SafetyPlane

Control

Plane

UserPlane

Data

Management

Management

orchestration

Body

Capacity

openning

management

Autonomous

DigitalTwinBody

Scenemodellibrary

Twinlargemodel

Closed-loopprevalidatin

Unified

data

control

interface

Communicationandcomputinglayer

(Wirelesscommunication,opticalcommunication,computing,storage)

Intelligent

operationandmaintenancemanagement

resource

scheduling

Connectionandroutinglayer(Multi-access,trustedconnection,heterogeneous

inter

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論