中考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)提分特訓(xùn)專題05 六大??既饶P停ń馕霭妫第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)提分特訓(xùn)專題05 六大常考全等模型(解析版)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)提分特訓(xùn)專題05 六大??既饶P停ń馕霭妫第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)提分特訓(xùn)專題05 六大??既饶P停ń馕霭妫第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)提分特訓(xùn)專題05 六大??既饶P停ń馕霭妫第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題05六大常考全等模型一、【知識回顧】①模型一:平移模型②模型二:軸對稱(翻折)模型③模型三:一線三等角模型(K字型)直角一線三等角④模型四:不共點(diǎn)旋轉(zhuǎn)模型⑤模型五:共頂點(diǎn)旋轉(zhuǎn)模型(手拉手模型)⑥模型六:半角模型(特殊的旋轉(zhuǎn)模型)二、【考點(diǎn)類型】考點(diǎn)1:平移模型典例1:(2022·廣西柳州·統(tǒng)考中考真題)如圖,點(diǎn)A,D,C,F(xiàn)在同一條直線上,AB=DE,BC=EF.有下列三個條件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)請?jiān)谏鲜鋈齻€條件中選取一個條件,使得△ABC≌△DEF.你選取的條件為(填寫序號)______(只需選一個條件,多選不得分),你判定△ABC≌△DEF的依據(jù)是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的結(jié)論△ABC≌△DEF.求證:AB∥DE.【答案】(1)①,SSS(2)見解析【分析】(1)根據(jù)SSS即可證明△ABC≌?DEF,即可解決問題;(2)根據(jù)全等三角形的性質(zhì)可得可得∠A=∠EDF,再根據(jù)平行線的判定即可解決問題.【詳解】(1)解:在△ABC和△DEF中,SKIPIF1<0,∴△ABC≌△DEF(SSS),∴在上述三個條件中選取一個條件,使得△ABC≌△DEF,選取的條件為①,判定△ABC≌△DEF的依據(jù)是SSS.(注意:只需選一個條件,多選不得分)故答案為:①,SSS;(2)證明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.【點(diǎn)睛】本題考查了平行線的性質(zhì)和全等三角形的性質(zhì),和判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵.【變式1】(2023秋·福建福州·八年級統(tǒng)考期末)如圖,點(diǎn)B,E,C,F(xiàn)在一條直線上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求證:SKIPIF1<0.【答案】見解析【分析】根據(jù)SKIPIF1<0得到SKIPIF1<0,然后證明SKIPIF1<0,即可得出結(jié)論.【詳解】證明:∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定定理以及性質(zhì)定理是解本題的關(guān)鍵.考點(diǎn)2:軸對稱(翻折)模型典例2:(2022·湖南長沙·統(tǒng)考中考真題)如圖,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分別為(1)求證:△ABC≌(2)若AB=4,CD=3,求四邊形【答案】(1)見解析(2)12【分析】(1)由角平分線的定義和垂直的定義求出∠CAB=∠CAD,∠B=∠D,結(jié)合已知條件,利用“AAS”即可求證;(2)由全等三角形的性質(zhì)得AB=AD=4,BC=CD=3,根據(jù)三角形的面積公式求出S△ABC,S△ACD,再根據(jù)四邊形【詳解】(1)∵AC平分∠BAD,∴∠CAB=∠CAD,∠B=∠D,∵AC=AC,∴△ABC?△ADC(AAS(2)∵△ABC?△ADC,AB=4,CD=3,∴AB=AD=4,BC=CD=3,∵∠B=∠D=90°,∴S∴四邊形ABCD的面積=S【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì),角平分線的定義,熟練掌握它們是解題的關(guān)鍵.【變式1】(2022·廣西百色·統(tǒng)考二模)如圖,在△ABC和△DCB中,∠A=∠D,AC和DB相交于點(diǎn)O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.【答案】(1)證明見解析;(2)證明見解析【分析】(1)證明△ABO≌△DCO(ASA),即可得到結(jié)論;(2)由△ABO≌△DCO,得到OB=OC,又OA=OD,得到BD=AC,又由∠A=∠D,即可證得結(jié)論.【詳解】(1)證明:在△ABO與△DCO中,∠A=∠DOA=OD∴△ABO≌△DCO(ASA)∴AB=DC;(2)證明:∵△ABO≌△DCO,∴OB=OC,∵OA=OD,∴OB+OD=OC+OA,∴BD=AC,在△ABC與△DCB中,AC=BD∠A=∠D∴△ABC≌△DCB(SAS).【點(diǎn)睛】此題考查了全等三角形的判定和性質(zhì),熟練掌握并靈活選擇全等三角形的判定方法是解題的關(guān)鍵考點(diǎn)3:一線三等角模型(K字型)典例3:(2022·浙江紹興·模擬預(yù)測)如圖,SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,且點(diǎn)SKIPIF1<0為邊SKIPIF1<0的中點(diǎn).將SKIPIF1<0繞點(diǎn)SKIPIF1<0旋轉(zhuǎn),在旋轉(zhuǎn)過程中,射線SKIPIF1<0與線段SKIPIF1<0相交于點(diǎn)SKIPIF1<0,射線SKIPIF1<0與射線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0.(1)如圖1,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時,①求證:SKIPIF1<0∽SKIPIF1<0;②線段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之間存在怎樣的數(shù)量關(guān)系?請說明理由;(2)當(dāng)SKIPIF1<0為等腰三角形時,求SKIPIF1<0的值.【答案】(1)①見解析,②BE2=BP·CQ(2)1或3【分析】(1)①推導(dǎo)角度關(guān)系可得∠CEQ=∠BPE,結(jié)合∠B=∠C即可得出結(jié)論;②由①中相似可得SKIPIF1<0,結(jié)合BE=CE即可得出結(jié)論;(2)Q點(diǎn)可能在線段CA上或者線段CA的延長線上,分兩種情況討論,結(jié)合(1)中的相似三角形即可得出結(jié)果.(1)解:①∵∠DEF=30°,∠B=30°,∴∠BED+∠CEQ=150°,∠BED+∠BPE=150°∴∠CEQ=∠BPE,∵∠B=∠C,∴△BPE∽△CEQ;②BE2=BP·CQ,理由如下∶∵△BPE∽△CEQ∴SKIPIF1<0∴BE·CE=BP·CQ∵點(diǎn)E為邊BC的中點(diǎn),∴BE=CE,∴BE2=BP·CQ;(2)解:①當(dāng)點(diǎn)Q在線段AC上時,∵∠A=180°-∠B-∠C=120°,為鈍角,∴△APQ為等腰三角形時有AP=AQ,∵∠B=∠C,∴AB=AC,∴BP=CQ,∴SKIPIF1<0②當(dāng)點(diǎn)Q在線段CA的延長線上時,如圖:連接PQ∵∠BAC=120°,∴∠BAQ=60°,當(dāng)△APQ為等腰三角形時,有△APQ為等邊三角形設(shè)AB=AC=2a,則BC=SKIPIF1<0a,BE=CE=SKIPIF1<0a,設(shè)AQ=AP=x,則CQ=2a+x,BP=2a-x,由(1)得∶BE2=BP·CQ∴(SKIPIF1<0a)2=(2a+x)(2a-x),解得∶x=a,∴BP=a,CQ=3a,∴SKIPIF1<0綜上SKIPIF1<0的值為1或3.【點(diǎn)睛】本題考查三角形相似綜合問題,熟練掌握一線三等角的相似三角形模型是解題關(guān)鍵.【變式1】(2022秋·黑龍江綏化·八年級校考期中)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0經(jīng)過點(diǎn)C,且SKIPIF1<0于D,SKIPIF1<0于E.(1)當(dāng)直線SKIPIF1<0繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時.①請說明SKIPIF1<0的理由;②請說明SKIPIF1<0的理由;(2)當(dāng)直線SKIPIF1<0繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0具有怎樣的等量關(guān)系?請寫出等量關(guān)系,并予以證明.(3)當(dāng)直線SKIPIF1<0繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0具有怎樣的等量關(guān)系?請直接在橫線上寫出這個等量關(guān)系:________.【答案】(1)①理由見解析;②理由見解析(2)SKIPIF1<0,證明見解析(3)SKIPIF1<0【分析】本題“一線三垂直”模型即可證明全等,根據(jù)全等三角形的性質(zhì)即可分別在三個圖形中證明SKIPIF1<0之間的關(guān)系.【詳解】(1)解:①∵SKIPIF1<0于D,SKIPIF1<0于E,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0,∴SKIPIF1<0,②∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,(2)結(jié)論:SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,(3)結(jié)論:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查全等三角形的判斷和性質(zhì),靈活運(yùn)用“一線三垂直”模型是解題的關(guān)鍵.【變式2】(2022秋·河北邯鄲·八年級??计谥校┤鐖D,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)D在線段SKIPIF1<0上運(yùn)動(D不與B、C重合),連接SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0交線段SKIPIF1<0于E.(1)當(dāng)SKIPIF1<0時,SKIPIF1<0_______SKIPIF1<0,SKIPIF1<0_______SKIPIF1<0,SKIPIF1<0_______SKIPIF1<0;點(diǎn)D從B向C運(yùn)動時,SKIPIF1<0逐漸變_______(填“大”或“小”);(2)當(dāng)DC等于多少時,SKIPIF1<0,請說明理由;(3)在點(diǎn)D的運(yùn)動過程中,SKIPIF1<0的形狀可以是等腰三角形嗎?若可以,請直接寫出SKIPIF1<0的度數(shù),若不可以,請說明理由.【答案】(1)25,25,65,小(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,理由見解析;(3)當(dāng)SKIPIF1<0的度數(shù)為SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0的形狀是等腰三角形.【分析】(1)先求出SKIPIF1<0的度數(shù),即可求出SKIPIF1<0的度數(shù),再利用三角形的外角性質(zhì)即可求出SKIPIF1<0的度數(shù),根據(jù)點(diǎn)D從B向C運(yùn)動時,SKIPIF1<0逐漸增大,而SKIPIF1<0不變化,SKIPIF1<0,即可得到答案;(2)根據(jù)全等三角形的判定條件求解即可;(3)先證明當(dāng)SKIPIF1<0時等腰三角形,只存在SKIPIF1<0或SKIPIF1<0兩種情況,然后分這兩種情況討論求解即可;【詳解】(1)解:∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;∵點(diǎn)D從B向C運(yùn)動時,SKIPIF1<0逐漸增大,而SKIPIF1<0不變化,SKIPIF1<0,∴點(diǎn)D從B向C運(yùn)動時,SKIPIF1<0逐漸變小,故答案為:25,25,65,小;(2)解:當(dāng)SKIPIF1<0時,SKIPIF1<0,理由:∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0;(3)解:當(dāng)SKIPIF1<0的度數(shù)為110°或80°時,SKIPIF1<0的形狀是等腰三角形,理由:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時等腰三角形,只存在SKIPIF1<0或SKIPIF1<0兩種情況,當(dāng)SKIPIF1<0時,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;當(dāng)SKIPIF1<0時,∴SKIPIF1<0,∴SKIPIF1<0,綜上所述,當(dāng)SKIPIF1<0的度數(shù)為SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0的形狀是等腰三角形.【點(diǎn)睛】本題主要考查了三角形內(nèi)角和定理,三角形的外角性質(zhì),全等三角形的判定,等腰三角形的性質(zhì),熟知相關(guān)知識是解題的關(guān)鍵.【變式3】(2022秋·八年級課時練習(xí))如圖,SKIPIF1<0中,SKIPIF1<0,則點(diǎn)B的坐標(biāo)為________.【答案】(4,1)【分析】如圖,過點(diǎn)B作BD⊥x軸于D,根據(jù)點(diǎn)A、點(diǎn)C坐標(biāo)可得OA、OC的長,根據(jù)同角的余角相等可得∠OAC=∠DCB,利用AAS可證明△OAC≌△DCB,根據(jù)全等三角形的性質(zhì)可得BD=OC,CD=OA,即可求出OD的長,進(jìn)而可得答案.【詳解】如圖,過點(diǎn)B作BD⊥x軸于D,∵A(0,3),C(1,0),∴OA=3,OC=1,∵∠ACB=90°,∴∠OCA+∠DCB=90°,∵∠OAC+∠OCA=90°,∴∠OAC=∠DCB,在△OAC和△DCB中,SKIPIF1<0,∴△OAC≌△DCB,∴BD=OC=1,CD=OA=3,∴OD=OC+CD=4,∴點(diǎn)B坐標(biāo)為(4,1).故答案為:(4,1)【點(diǎn)睛】本題考查坐標(biāo)與圖形及全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定定理是解題關(guān)鍵.考點(diǎn)4:不共頂點(diǎn)旋轉(zhuǎn)模型典例4:(2023秋·山東泰安·七年級統(tǒng)考期末)如圖,點(diǎn)SKIPIF1<0在一條直線上,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的長度.【答案】(1)見解析(2)3【分析】(1)由平行線的性質(zhì)可得SKIPIF1<0根據(jù)SKIPIF1<0證明全等即可;(2)由全等三角形的性質(zhì)可得.【詳解】(1)解:證明:SKIPIF1<0SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)解:由(1)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0即SKIPIF1<0,SKIPIF1<0【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、平行線的性質(zhì)等,證明三角形全等是解題的關(guān)鍵.【變式1】(2023春·山東濟(jì)南·九年級校聯(lián)考期中)如圖,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的對角線SKIPIF1<0上兩點(diǎn),且SKIPIF1<0,求證:SKIPIF1<0.【答案】證明見解析【分析】借助平行四邊形的性質(zhì),利用“SKIPIF1<0”證明SKIPIF1<0,由全等三角形的性質(zhì)可得SKIPIF1<0,然后根據(jù)“內(nèi)錯角相等,兩直線平行”即可證明SKIPIF1<0.【詳解】證明:∵四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;∴SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)以及平行線的判定與性質(zhì)等知識,證明SKIPIF1<0是解題關(guān)鍵.【變式2】(2022·福建泉州·??既#┰谄叫兴倪呅蜸KIPIF1<0中,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0上的點(diǎn),且SKIPIF1<0.求證:SKIPIF1<0.【答案】見解析【分析】依據(jù)平行四邊形的性質(zhì),即可得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,判定SKIPIF1<0,即可得到SKIPIF1<0.【詳解】在平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.考點(diǎn)5:共頂點(diǎn)旋轉(zhuǎn)模型(手拉手模型)典例5:(2022秋·八年級課時練習(xí))在銳角三角形ABC中,AH是邊BC的高,分別以AB,AC為邊向外作正方形ABDE和正方形ACFG,連接CE,BG和EG,EG與HA的延長線交于點(diǎn)M,下列結(jié)論:①BG=CE;②BG⊥CE;③AM是△AEG的中線;④∠EAM=∠ABC.其中正確的是_________.【答案】①②③④【分析】根據(jù)正方形的性質(zhì)和SAS可證明△ABG≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可判斷①;設(shè)BG、CE相交于點(diǎn)N,AC、BG相交于點(diǎn)K,如圖1,根據(jù)全等三角形對應(yīng)角相等可得∠ACE=∠AGB,然后根據(jù)三角形的內(nèi)角和定理可得∠CNG=∠CAG=90°,于是可判斷②;過點(diǎn)E作EP⊥HA的延長線于P,過點(diǎn)G作GQ⊥AM于Q,如圖2,根據(jù)余角的性質(zhì)即可判斷④;利用AAS即可證明△ABH≌△EAP,可得EP=AH,同理可證GQ=AH,從而得到EP=GQ,再利用AAS可證明△EPM≌△GQM,可得EM=GM,從而可判斷③,于是可得答案.【詳解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正確;設(shè)BG、CE相交于點(diǎn)N,AC、BG相交于點(diǎn)K,如圖1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正確;過點(diǎn)E作EP⊥HA的延長線于P,過點(diǎn)G作GQ⊥AM于Q,如圖2,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=90°,∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正確;∵∠AHB=∠P=90°,AB=AE,∴△ABH≌△EAP(AAS),∴EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,SKIPIF1<0,∴△EPM≌△GQM(AAS),∴EM=GM,∴AM是△AEG的中線,故③正確.綜上所述,①②③④結(jié)論都正確.故答案為:①②③④.【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形的內(nèi)角和定理以及全等三角形的判定和性質(zhì),作輔助線構(gòu)造出全等三角形是難點(diǎn),熟練掌握全等三角形的判定和性質(zhì)是關(guān)鍵.【變式1】(2022秋·八年級課時練習(xí))通過對下面數(shù)學(xué)模型的研究學(xué)習(xí),解決下列問題:(1)如圖1,∠BAD=90°,AB=AD,過點(diǎn)B作BC⊥AC于點(diǎn)C,過點(diǎn)D作DE⊥AC于點(diǎn)E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.進(jìn)而得到AC=,BC=AE.我們把這個數(shù)學(xué)模型稱為“K字”模型或“一線三等角”模型;(2)如圖2,∠BAD=∠CAE=90°,AB=AD,AC=AE,連接BC,DE,且BC⊥AF于點(diǎn)F,DE與直線AF交于點(diǎn)G.求證:點(diǎn)G是DE的中點(diǎn);(深入探究)(3)如圖,已知四邊形ABCD和DEGF為正方形,△AFD的面積為S1,△DCE的面積為S2,則有S1S2(填“>、=、<”)【答案】(1)DE;(2)見解析;(3)=【分析】(1)根據(jù)全等三角形的性質(zhì)可直接進(jìn)行求解;(2)分別過點(diǎn)D和點(diǎn)E作DH⊥FG于點(diǎn)H,EQ⊥FG于點(diǎn)Q,進(jìn)而可得∠BAF=∠ADH,然后可證△ABF≌△DAH,則有AF=DH,進(jìn)而可得DH=EQ,通過證明△DHG≌△EQG可求解問題;(3)過點(diǎn)D作DO⊥AF交AF于O,過點(diǎn)E作EN⊥OD交OD延長線于N,過點(diǎn)C作CM⊥OD交OD延長線于M,由題意易得∠ADC=∠90°,AD=DC,DF=DE,然后可得∠ADO=∠DCM,則有△AOD≌△DMC,△FOD≌△DNE,進(jìn)而可得OD=NE,通過證明△ENP≌△CMP及等積法可進(jìn)行求解問題.【詳解】解:(1)∵SKIPIF1<0,∴SKIPIF1<0;(2)分別過點(diǎn)D和點(diǎn)E作DH⊥FG于點(diǎn)H,EQ⊥FG于點(diǎn)Q,如圖所示:∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴△ABF≌△DAH,∴AF=DH,同理可知AF=EQ,∴DH=EQ,∵DH⊥FG,EQ⊥FG,∴SKIPIF1<0,∵SKIPIF1<0∴△DHG≌△EQG,∴DG=EG,即點(diǎn)G是DE的中點(diǎn);(3)SKIPIF1<0,理由如下:如圖所示,過點(diǎn)D作DO⊥AF交AF于O,過點(diǎn)E作EN⊥OD交OD延長線于N,過點(diǎn)C作CM⊥OD交OD延長線于M∵四邊形ABCD與四邊形DEGF都是正方形∴∠ADC=∠90°,AD=DC,DF=DE∵DO⊥AF,CM⊥OD,∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,又∵∠ODA+∠CDM=90°,∴∠ADO=∠DCM,∴△AOD≌△DMC,∴SKIPIF1<0,OD=MC,同理可以證明△FOD≌△DNE,∴SKIPIF1<0,OD=NE,∴MC=NE,∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,∴△ENP≌△CMP,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0即SKIPIF1<0.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定、直角三角形的兩個銳角互余及等積法,熟練掌握全等三角形的判定條件是解題的關(guān)鍵.【變式2】(2020·江蘇徐州·統(tǒng)考中考真題)如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求SKIPIF1<0的度數(shù).【答案】(1)見解析(2)90°【分析】(1)根據(jù)題意證明△ACE≌△BCD即可求解;(2)根據(jù)三角形的內(nèi)角和及全等三角形的性質(zhì)即可得到SKIPIF1<0的度數(shù).【詳解】(1)∵SKIPIF1<0,SKIPIF1<0,∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE即∠ACE=∠BCD又SKIPIF1<0.SKIPIF1<0∴△ACE≌△BCD∴SKIPIF1<0(2)∵△ACE≌△BCD∴∠A=∠B設(shè)AE與BC交于O點(diǎn),∴∠AOC=∠BOF∴∠A+∠AOC+∠ACO=∠B+∠BOF+∠BFO=180°∴∠BFO=∠ACO=90°故SKIPIF1<0=180°-∠BFO=90°.【點(diǎn)睛】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定定理.【變式3】(2023·全國·九年級專題練習(xí))如圖,在SKIPIF1<0、SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0.連接SKIPIF1<0,以SKIPIF1<0、SKIPIF1<0為鄰邊作SKIPIF1<0,連接SKIPIF1<0.(1)若SKIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0分別與SKIPIF1<0、SKIPIF1<0重合時(圖1),易得SKIPIF1<0.當(dāng)SKIPIF1<0繞點(diǎn)SKIPIF1<0順時針旋轉(zhuǎn)到(圖2)位置時,請直接寫出線段SKIPIF1<0、SKIPIF1<0的數(shù)量關(guān)系________;(2)若SKIPIF1<0,當(dāng)SKIPIF1<0繞點(diǎn)SKIPIF1<0順時針旋轉(zhuǎn)到(圖3)位置時,試判斷線段SKIPIF1<0、SKIPIF1<0的數(shù)量關(guān)系,并證明你的結(jié)論;(3)若SKIPIF1<0為任意角度,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0繞點(diǎn)SKIPIF1<0順時針旋轉(zhuǎn)一周(圖4),當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時,請直接寫出SKIPIF1<0的長度.【答案】(1)SKIPIF1<0(2)SKIPIF1<0,證明見解析(3)SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)旋轉(zhuǎn)全等模型可證,SKIPIF1<0(SAS),結(jié)合已知平行四邊形性質(zhì)可證:SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0是等邊三角形即可解題;(2)同理第一問,根據(jù)SKIPIF1<0,可得SKIPIF1<0是等腰直角三角形即可解題;(3)根據(jù)第一問可證:SKIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,繼而解三角形,求出BD長,由相似三角形性質(zhì)求出EF,由分兩種情況,分別畫圖求解即可.【詳解】(1)解:如圖2,連接EC,∵SKIPIF1<0,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAD=∠CAE,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0(SAS),∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵四邊形BDFC是平行四邊形,∴BC∥DF,BD=CF∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴EF=CF;(2)解:同理(1)可得:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,SKIPIF1<0;(3)解:分兩種情況進(jìn)行討論:如圖3-1:AF=AE+EF,同理1可得:SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由(1)得:SKIPIF1<0(SAS),∴SKIPIF1<0,∴SKIPIF1<0∴當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時,SKIPIF1<0,∴當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,如圖4-1,過A點(diǎn)作AH⊥DE,∵AD=AE,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,如圖4-2,AF=EF-AE,同理可得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,綜上所述:AF長為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題屬于幾何壓軸題,綜合性比較強(qiáng),體會其中蘊(yùn)含的從特殊到一般的思想是解題的關(guān)鍵.解題關(guān)鍵是關(guān)鍵旋轉(zhuǎn)全等模型證明SKIPIF1<0是等腰三角形,SKIPIF1<0,從而可得SKIPIF1<0,再結(jié)合解三角形求線段長.考點(diǎn)6:半角模型典例6:(2019·全國·九年級專題練習(xí))如圖所示,SKIPIF1<0是邊長為1的等邊三角形,SKIPIF1<0是頂角SKIPIF1<0的等腰三角形,以SKIPIF1<0為頂點(diǎn)作一個SKIPIF1<0的角,角的兩邊交SKIPIF1<0、SKIPIF1<0于SKIPIF1<0、SKIPIF1<0,連結(jié)SKIPIF1<0,求SKIPIF1<0周長.【答案】△AMN的周長為2.【分析】根據(jù)已知條件得△CDE≌△BDM,再利用DE=DM,SKIPIF1<0證明△DMN≌△DEN,得到對應(yīng)邊相等即可解題.【詳解】如圖,延長NC到E,使CE=BM,連接DE,

∵△ABC為等邊三角形,△BCD為等腰三角形,且∠BDC=120°,∴∠MBD=∠MBC+∠DBC=60°+30°=90°,∠DCE=180°﹣∠ACD=180°﹣∠ABD=90°,又∵BM=CE,BD=CD,∴△CDE≌△BDM,∴∠CDE=∠BDM,DE=DM,∠NDE=∠NDC+∠CDE=∠NDC+∠BDM=∠BDC﹣∠MDN=120°﹣60°=60°,∵在△DMN和△DEN中,SKIPIF1<0SKIPIF1<0,∴△DMN≌△DEN,∴MN=NE=CE+CN=BM+CN,∴△AMN的周長=AM+AN+MN=AM+AN+NC+BM=AB+AC=1+1=2,故△AMN的周長為2.【點(diǎn)睛】本題考查等邊三角形的性質(zhì)與應(yīng)用,截長補(bǔ)短的數(shù)學(xué)方法,中等難度,作輔助線證明全等是解題關(guān)鍵.【變式1】(2022秋·八年級課時練習(xí))如圖,在四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0上的點(diǎn),連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)如圖①,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求證:SKIPIF1<0;

(2)如圖②,SKIPIF1<0,當(dāng)SKIPIF1<0周長最小時,求SKIPIF1<0的度數(shù);(3)如圖③,若四邊形SKIPIF1<0為正方形,點(diǎn)SKIPIF1<0、SKIPIF1<0分別在邊SKIPIF1<0、SKIPIF1<0上,且SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,請求出線段SKIPIF1<0的長度.【答案】(1)見解析;(2)SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)延長SKIPIF1<0到點(diǎn)G,使SKIPIF1<0,連接SKIPIF1<0,首先證明SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,然后利用角度之間的關(guān)系得出SKIPIF1<0,進(jìn)而可證明SKIPIF1<0,則SKIPIF1<0,則結(jié)論可證;(2)分別作點(diǎn)A關(guān)于SKIPIF1<0和SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,根據(jù)軸對稱的性質(zhì)有SKIPIF1<0,SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在同一條直線上時,SKIPIF1<0即為SKIPIF1<0周長的最小值,然后利用SKIPIF1<0求解即可;(3)旋轉(zhuǎn)SKIPIF1<0至SKIPIF1<0的位置,首先證明SKIPIF1<0,則有SKIPIF1<0,最后利用SKIPIF1<0求解即可.【詳解】(1)證明:如解圖①,延長SKIPIF1<0到點(diǎn)SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.SKIPIF1<0,SKIPIF1<0;(2)解:如解圖,分別作點(diǎn)A關(guān)于SKIPIF1<0和SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.由對稱的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0此時SKIPIF1<0的周長為SKIPIF1<0.SKIPIF1<0當(dāng)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在同一條直線上時,SKIPIF1<0即為SKIPIF1<0周長的最小值.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(3)解:如解圖,旋轉(zhuǎn)SKIPIF1<0至SKIPIF1<0的位置,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.【點(diǎn)睛】本題主要考查全等三角形的判定及性質(zhì),軸對稱的性質(zhì),掌握全等三角形的判定及性質(zhì)是解題的關(guān)鍵.【變式2】(2022秋·江蘇·八年級專題練習(xí))如圖,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分別在BD,CD上,∠MAN=45°,則△DMN的周長為_____.【答案】2SKIPIF1<0+2【分析】將△ACN繞點(diǎn)A逆時針旋轉(zhuǎn),得到△ABE,由旋轉(zhuǎn)得出∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,求出∠EAM=∠MAN,根據(jù)SAS推出△AEM≌△ANM,根據(jù)全等得出MN=ME,求出MN=CN+BM,解直角三角形求出DC,即可求出△DMN的周長=BD+DC,代入求出答案即可.【詳解】將△ACN繞點(diǎn)A逆時針旋轉(zhuǎn),得到△ABE,如圖:

由旋轉(zhuǎn)得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三點(diǎn)共線,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,SKIPIF1<0,

∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CN+BM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BC=4,∴CD=SKIPIF1<0BC=2,BD=SKIPIF1<0=2SKIPIF1<0,∴△DMN的周長為DM+DN+MN=DM+DN+BM+CN=BD+DC=2SKIPIF1<0+2,故答案為:2SKIPIF1<0+2.【點(diǎn)睛】本題考查直角三角形、全等三角形的性質(zhì)和判定、旋轉(zhuǎn)的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.【變式3】.(2020·黑龍江哈爾濱·統(tǒng)考模擬預(yù)測)如圖,四邊形SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點(diǎn),連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則線段SKIPIF1<0的長為_______.【答案】SKIPIF1<0【分析】如下圖,先構(gòu)造并證明SKIPIF1<0,從而得出SKIPIF1<0,再根據(jù)SKIPIF1<0可推導(dǎo)出SKIPIF1<0,最后在Rt△ACM中求解.【詳解】解析:連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得SKIPIF1<0解得SKIPIF1<0.SKIPIF1<0.【點(diǎn)睛】本題考查了構(gòu)造并證明全等三角形、勾股定理的運(yùn)用,解題關(guān)鍵是利用SKIPIF1<0進(jìn)行角度轉(zhuǎn)化,得到邊SKIPIF1<0.鞏固訓(xùn)練一、單選題1.(2022秋·河北唐山·八年級統(tǒng)考期中)如圖SKIPIF1<0,SKIPIF1<0,下列條件中不能判定SKIPIF1<0的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)全等三角形的判定定理即可一判定.【詳解】解:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,根據(jù)ASA可判定SKIPIF1<0,故該選項(xiàng)不符合題意;當(dāng)SKIPIF1<0時,根據(jù)SAS可判定SKIPIF1<0,故該選項(xiàng)不符合題意;當(dāng)SKIPIF1<0時,不能判定SKIPIF1<0,故該選項(xiàng)符合題意;當(dāng)SKIPIF1<0時,可得SKIPIF1<0,根據(jù)AAS可判定SKIPIF1<0,故該選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了全等三角形的判定,熟練掌握和運(yùn)用全等三角形的判定定理是解決本題的關(guān)鍵.2.(2022秋·江蘇揚(yáng)州·八年級校考階段練習(xí))如圖所示的是重疊的兩個直角三角形,將其中一個直角三角形沿BC方向平移得到△DEF.若SKIPIF1<0cm,SKIPIF1<0cm,SKIPIF1<0cm,則圖中陰影部分面積為(

)A.47cm2 B.48cm2 C.49cm2 D.50cm2【答案】B【分析】先根據(jù)平移的性質(zhì)得到SKIPIF1<0cm,SKIPIF1<0≌SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0cm,求出SKIPIF1<0,然后根據(jù)梯形的面積公式計(jì)算即可.【詳解】解:SKIPIF1<0沿SKIPIF1<0方向平移得到SKIPIF1<0,SKIPIF1<0cm,SKIPIF1<0≌SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(cm),∴SKIPIF1<0,SKIPIF1<0(cm2),故B正確.故選:B.【點(diǎn)睛】本題主要考查平移的基本性質(zhì):平移不改變圖形的形狀和大小;經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行SKIPIF1<0或共線SKIPIF1<0且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.3.(2023秋·江蘇鹽城·八年級統(tǒng)考期末)如圖,已知SKIPIF1<0,要使SKIPIF1<0,再添加一個條件()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】A【分析】利用全等三角形的判定方法,即可得出答案.【詳解】解:∵SKIPIF1<0,SKIPIF1<0,∴若添加條件SKIPIF1<0,無法判定SKIPIF1<0;若添加SKIPIF1<0,則SKIPIF1<0;若添加SKIPIF1<0,則SKIPIF1<0;若添加SKIPIF1<0,則SKIPIF1<0;故選:A.【點(diǎn)睛】本題考查了三角形全等的判定方法;判定三角形全等的一般方法有:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.4.(2023春·廣東深圳·七年級校考階段練習(xí))如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列條件中不能證明SKIPIF1<0的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根據(jù)平行線的性質(zhì)得出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,SKIPIF1<0,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,符合全等三角形的判定定理SKIPIF1<0,能推出SKIPIF1<0,故本選項(xiàng)不符合題意;B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不符合全等三角形的判定定理,不能推出SKIPIF1<0,故本選項(xiàng)符合題意;C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,符合全等三角形的判定定理SKIPIF1<0,能推出SKIPIF1<0,故本選項(xiàng)不符合題意;D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0符合全等三角形的判定定理SKIPIF1<0,能推出SKIPIF1<0,故本選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題考查了平行線的性質(zhì)和全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩直角三角形全等還有SKIPIF1<0等.5.(2023春·四川成都·九年級成都嘉祥外國語學(xué)校??奸_學(xué)考試)如圖,四邊形SKIPIF1<0是菱形,M,N分別是SKIPIF1<0,SKIPIF1<0兩邊上的點(diǎn),不能保證SKIPIF1<0和SKIPIF1<0一定全等的條件是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根據(jù)菱形的性質(zhì)可得SKIPIF1<0,再根據(jù)三角形全等的判定定理即可得.【詳解】解:SKIPIF1<0四邊形SKIPIF1<0是菱形,SKIPIF1<0.A、SKIPIF1<0,根據(jù)SKIPIF1<0定理可以判定SKIPIF1<0,則此項(xiàng)不符合題意;B、SKIPIF1<0,根據(jù)SKIPIF1<0定理可以判定SKIPIF1<0,則此項(xiàng)不符合題意;C、SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,根據(jù)SKIPIF1<0定理可以判定SKIPIF1<0,則此項(xiàng)不符合題意;D、SKIPIF1<0,根據(jù)SKIPIF1<0定理不能判定SKIPIF1<0,則此項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、三角形全等的判定,熟練掌握菱形的性質(zhì)是解題關(guān)鍵.6.(2023秋·湖北

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論