湖南省邵陽市莨山鎮(zhèn)中心學校高二數(shù)學理摸底試卷含解析_第1頁
湖南省邵陽市莨山鎮(zhèn)中心學校高二數(shù)學理摸底試卷含解析_第2頁
湖南省邵陽市莨山鎮(zhèn)中心學校高二數(shù)學理摸底試卷含解析_第3頁
湖南省邵陽市莨山鎮(zhèn)中心學校高二數(shù)學理摸底試卷含解析_第4頁
湖南省邵陽市莨山鎮(zhèn)中心學校高二數(shù)學理摸底試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵陽市莨山鎮(zhèn)中心學校高二數(shù)學理摸底試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知數(shù)列{an}為等差數(shù)列,Sn為前n項和,公差為d,若﹣=100,則d的值為()A. B. C.10 D.20參考答案:B【考點】等差數(shù)列的前n項和.【分析】由等差數(shù)列{an}可得:=d=n+為等差數(shù)列,即可得出.【解答】解:由等差數(shù)列{an}可得:=d=n+為等差數(shù)列,∵﹣=100,∴+﹣=100,∴10d=1,解得d=.故選:B.【點評】本題考查了等差數(shù)列的性質(zhì)與求和公式,考查了推理能力與計算能力,屬于中檔題.2.設函數(shù)在處存在導數(shù),則(

)A. B. C. D.參考答案:A【分析】利用在某點處的導數(shù)的定義來求解.【詳解】,故選A.【點睛】本題主要考查在某點處導數(shù)的定義,一般是通過構造定義形式來解決,側(cè)重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).3.如圖長方體中,AB=AD=2,CC1=,則二面角

C1—BD—C的大小為(

)A、300

B、450

C、600

D、900參考答案:A略4.過原點的直線l與雙曲線﹣=﹣1有兩個交點,則直線l的斜率的取值范圍是()A.(﹣,) B.(﹣∞,﹣)∪(,+∞) C.[﹣,] D.(﹣∞,﹣]∪[,+∞)參考答案:B【考點】直線與圓錐曲線的關系.【分析】設過原點的直線方程為y=kx,與雙曲方程聯(lián)立,得:x2(4k2﹣3)﹣12=0,因為直線與雙曲有兩個交點,所以△=48(4k2﹣3)>0,由此能求出k的范圍.【解答】解:∵雙曲方程為﹣=﹣1,∴,設過原點的直線方程為y=kx,與雙曲方程聯(lián)立,得:x2(4k2﹣3)﹣12=0因為直線與雙曲有兩個交點,所以△=48(4k2﹣3)>0∴k2>=,解得,或k<﹣.故選B.【點評】本題考查直線和雙曲線的位置關系,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.5.已知f(x)=x5+2x3+3x2+x+1,應用秦九韶算法計算x=3時的值時,v3的值為()A.27 B.11 C.109 D.36參考答案:D【考點】中國古代數(shù)學瑰寶.【分析】秦九韶算法可得f(x)=((((x+0)x+2)x+3)x+1)x+1,進而得出.【解答】解:由秦九韶算法可得f(x)=x5+2x3+3x2+x+1=((((x+0)x+2)x+3)x+1)x+1,∴v0=1,v1=1×3+0=3,v2=3×3+2=11,v3=11×3+3=36.故選:D.6.已知F1、F2是橢圓的兩個焦點,若橢圓上存在點P使,則|PF1|?|PF2|=()A.b2 B.2b2 C.2b D.b參考答案:B【考點】橢圓的簡單性質(zhì).【專題】計算題;圓錐曲線的定義、性質(zhì)與方程.【分析】由F1、F2是橢圓的兩個焦點,橢圓上存在點P,使,PF1⊥PF2,知=|PF1|?|PF2|=b2,由此能求出結果.【解答】解:∵F1、F2是橢圓的兩個焦點,橢圓上存在點P,使,∴PF1⊥PF2,∴=|PF1|?|PF2|=b2tan=b2,∴|PF1|?|PF2|=2b2.故選B.【點評】本題考查橢圓的性質(zhì)的簡單應用,解題時要認真審題,注意等價轉(zhuǎn)化思想的合理運用.7.雙曲線方程為則它的右焦點坐標為(

)A.

B.

C.

D.參考答案:D8.給出定義:若函數(shù)在上可導,即存在,且導函數(shù)在上也可導,則稱

在上存在二階導函數(shù),記,若在上恒成立,則稱在上為凸函數(shù)。以下四個函數(shù)在上不是凸函數(shù)的是(

)A

B

C

D參考答案:D略9.已知f(x)是定義在(0,+∞)上的非負可導函數(shù),且滿足xf'(x)+f(x)≤0,對任意的0<a<b,則必有()A.a(chǎn)f(b)≤bf(a) B.bf(a)≤af(b) C.a(chǎn)f(a)≤f(b) D.bf(b)≤f(a)參考答案:A【考點】利用導數(shù)研究函數(shù)的單調(diào)性;導數(shù)的運算.【分析】先構造函數(shù),再由導數(shù)與原函數(shù)的單調(diào)性的關系解決.【解答】解:xf′(x)+f(x)≤0?[xf(x)]′≤0?函數(shù)F(x)=xf(x)在(0,+∞)上為常函數(shù)或遞減,又0<a<b且f(x)非負,于是有:af(a)≥bf(b)≥0①>>0②,①②兩式相乘得:≥≥0?af(b)≤bf(a),故選:A.10.下列四個命題中,正確的有()①兩個變量間的相關系數(shù)r越小,說明兩變量間的線性相關程度越低;②命題“?x∈R,使得x2+x+1<0”的否定是:“對?x∈R,均有x2+x+1>0”;③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;④若函數(shù)f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.A.0個 B.1個 C.2個 D.3個參考答案:A【考點】命題的真假判斷與應用.【分析】根據(jù)相關系數(shù)的定義可知①錯誤;根據(jù)特稱命題(又叫存在性命題)的否定可知②錯誤;根據(jù)真值表即可判斷“p∧q為真”是命題“p∨q為真”的充分不必要條件,故③錯誤;由條件可得,f(﹣1)=0,f'(﹣1)=0,解得a=2,b=9或a=1,b=3,經(jīng)檢驗,當a=1,b=3時,f'(x)=3x2+6x+3=3(x+1)2≥0恒成立,此時f(x)沒有極值點,故④錯誤.【解答】解:對于①:相關系數(shù)r的絕對值越趨近于1,相關性越強;越趨近于0,相關性越弱,故①錯誤;對于②:命題“?x∈R,使得x2+x+1<0”的否定是:“對?x∈R,均有x2+x+1≥0”,故②錯誤;對于③:若p∧q為真,則p、q均為真命題,此時p∨q為真,故命題“p∧q為真”是命題“p∨q為真”的充分條件,故③錯誤;對于④:f'(x)=3x2+6ax+b,因為f(x)在x=﹣1有極值0,故,解得經(jīng)檢驗,當a=2,b=9時,f'(x)=3x2+12x+9=3(x+1)(x+3),此時f(x)在x=﹣1處取得極小值,符合條件;當a=1,b=3時,f'(x)=3x2+6x+3=3(x+1)2≥0恒成立,此時f(x)沒有極值點,故不符合條件;所以a=2,b=9.故④錯誤.故選:A.【點評】考查了相關系數(shù)的概念,特稱命題的否定,復合命題的真值表以及導數(shù)的應用,對第四個命題中利用導數(shù)求出a,b的值后需進行檢驗.二、填空題:本大題共7小題,每小題4分,共28分11.已知點為雙曲線的右支上一點,、為雙曲線的左、右焦點,使(為坐標原點),且,則雙曲線離心率為

。參考答案:12.在平面直角坐標系中,“”是“方程的曲線為橢圓”的______條件。(填寫“充分不必要”、“必要不充分”、“充分必要”和“既不充分也不必要”之一)參考答案:略13.已知數(shù)列{an}的通項公式為an=nsin+1,前n項和為Sn,則S2015=.參考答案:-2014考點;數(shù)列的求和.專題;等差數(shù)列與等比數(shù)列.分析;an=nsin+1,可得a1=2,a2=1,a3=﹣3+1=﹣2,a4=1,a5=5+1=6,…,于是a2k=2ksinkπ+1=1,a2k﹣1=(2k﹣1)+1=(﹣1)k+1(2k﹣1)+1.即可得出.解答;解:∵an=nsin+1,∴a1=2,a2=1,a3=﹣3+1=﹣2,a4=1,a5=5+1=6,…,可得a2k=2ksinkπ+1=1,a2k﹣1=(2k﹣1)+1=(﹣1)k+1(2k﹣1)+1.∴S2015=(a1+a3+…+a2015)+(a2+a4+…+a2014)=[(1﹣3)+(5﹣7)+…+(2011﹣2013)﹣2015+1008]+1007=(﹣2×1007﹣2015+1008)+1007=﹣2014.故答案為:﹣2014.點評;本題考查了遞推關系的應用、分組求和問題、三角函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.14.籃球運動員在比賽中每次罰球命中得1分,罰不中得0分,已知某運動員罰球命中的概率為0.7,則他罰球2次(每次罰球結果互不影響)的得分的數(shù)學期望是

.參考答案:1.415.將兩枚質(zhì)地均勻透明且各面分別標有1,2,3,4的正四面體玩具各擲一次,設事件A={兩個玩具底面點數(shù)不相同},B={兩個玩具底面點數(shù)至少出現(xiàn)一個2點},則P()=

。參考答案:16.如圖3,四邊形內(nèi)接于⊙,是直徑,與⊙相切,切點為,,

.

參考答案:略17.閱讀如圖的程序框圖,輸入的N=6,則輸出的結果為

參考答案:9考點:程序框圖.專題:算法和程序框圖.分析:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.解答: 解:∵輸入的N=6,當i=1時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后:S=1,i=2;當i=2時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后:S=9,i=3;當i=3時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后:S=36,i=4;當i=4時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后:S=100,i=5;當i=5時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后:S=225,i=6;當i=6時,不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體后:S=441,i=7;當i=7時,滿足退出循環(huán)的條件,故輸出的==9,故答案為:9點評:本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(本小題滿分12分)已知橢圓中心在原點,焦點在x軸上,離心率e=,過橢圓的右焦點且垂直于長軸的弦長為(1)求橢圓的標準方程;(2)已知直線l與橢圓相交于P,Q兩點,O為原點,且⊥。試探究點O到直線l的距離是否為定值?若是,求出這個定值;若不是,說明理由。參考答案:解:(1)設橢圓方程為

(a>b>0),因為e=,所以…………1據(jù)題意在橢圓上,則,于是,解得b=1,………………2因為a=c,a2-c2=b2=1,則c=1,a=…………4故橢圓的方程為……………………5(2)當直線l的斜率存在時,設直線l的方程為y=kx+m,點P(x1,y1),Q(x2,y2),由得(2k2+1)x2+4kmx+2m2-2=0……………………6所以x1+x2=-,x1x2=………………7于是y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2·+km·-+m2=……………8因為⊥,所以x1x2+y1y2=+==0,即3m2-2k2-2=0,所以m2=……………9設原點O到直線l的距離為d,則d===……10當直線l的斜率不存在時,因為⊥,根據(jù)橢圓的對稱性,不妨設直線OP,OQ的方程分別為y=x,y=-x可得P,Q或者P,Q.此時,原點O到直線l的距離仍為………11綜上分析,點O到直線l的距離為定值…………1219.(12分)設的內(nèi)角所對的邊長分別為,且,.(Ⅰ)求邊長;(Ⅱ)若的面積,求的周長.參考答案:(1)由與兩式相除,有:又通過知:,則,,則.(2)由,得到.由,解得:,最后.20.若展開式中前三項系數(shù)成等差數(shù)列,求:(1)展開式中含x的一次冪的項;(2)展開式中所有x的有理項;(3)展開式中系數(shù)最大的項。參考答案:(1);(2)有理項分別為:;;;(3)系數(shù)最大項為第項和第項【分析】列出展開式的通項公式,利用前三項系數(shù)成等差數(shù)列求出;(1)根據(jù)通項公式,可知,代入求得結果;(2)根據(jù),可求得,代入通項公式求得結果;(3)記第項系數(shù)為,設第項的系數(shù)最大,可得,解不等式求得的取值,代入通項公式得到結果.【詳解】展開式的通項公式為:由已知條件知,解得:或(舍去)(1)令,解得的一次冪的項為:(2)令則只有當時,對應的項才為有理項則有理項分別為:;;(3)記第項系數(shù)為,設第項的系數(shù)最大,則有:且又,于是有即

解得:系數(shù)最大項為第項和第項【點睛】本題考查二項式定理的綜合應用,涉及到展開式項的系數(shù)的應用、求解指定項的系數(shù)、系數(shù)最大項的求解問題,關鍵是能夠通過展開式通項公式得到符合題意的的取值.21.(本題10分)已知(),

(1)當時,求的值;

(2)設,試用數(shù)學歸納法證明:

當時,。參考答案:解:(1)記,

則(4分)

(2)設,則原展開式變?yōu)椋海?/p>

所以(6分)

當時,,結論成立

假設時成立,即

那么時,

,結論成立。(9分)

所以當時,。(10分)22.班主任為了對本班學生的考試成績進行分析,決定從全班25名男同學,15名女同學中隨機抽取一個容量為8的樣本進行分析.(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出計算式即可,不必計算出結果)(2)隨機抽取8位,他們的數(shù)學分數(shù)從小到大排序是:60,65,70,75,80,85,90,95,物理分數(shù)從小到大排序是:72,77,80,84,88,90,93,95.①若規(guī)定85分以上(包括85分)為優(yōu)秀,求這8位同學中恰有3位同學的數(shù)學和物理分數(shù)均為優(yōu)秀的概率;②若這8位同學的數(shù)學、物理分數(shù)事實上對應如表:學生編號12345678數(shù)學分數(shù)x6065707580859095物理分數(shù)y7277808488909395根據(jù)上表數(shù)據(jù),由變量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論