廣東省廣州市華南師大附中2023年中考聯(lián)考數(shù)學(xué)試題含解析_第1頁(yè)
廣東省廣州市華南師大附中2023年中考聯(lián)考數(shù)學(xué)試題含解析_第2頁(yè)
廣東省廣州市華南師大附中2023年中考聯(lián)考數(shù)學(xué)試題含解析_第3頁(yè)
廣東省廣州市華南師大附中2023年中考聯(lián)考數(shù)學(xué)試題含解析_第4頁(yè)
廣東省廣州市華南師大附中2023年中考聯(lián)考數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷

考生須知:

1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色

字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。

2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。

3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。

一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)

1.計(jì)算(-3)-(-6)的結(jié)果等于()

A.3B.-3C.9D.18

廣=2^mx+ny=8

2.己知)'=〔是二元一次方程組加一機(jī))'T的解,貝盧加一〃的算術(shù)平方根為()

A.+2B.C.2D.4

3.如圖,四邊形ABCD中,AD〃BC,ZB=90°,E為AB上一點(diǎn),分別以ED,EC為折痕將兩個(gè)角(NA,ZB)向

內(nèi)折起,點(diǎn)A,B恰好落在CD邊的點(diǎn)F處.若AD=3,BC=5,則EF的值是()

4.如圖是一個(gè)由5個(gè)相同的正方體組成的立體圖形,它的主視圖是()

5.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2

(厚度忽略不計(jì)),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設(shè)矩形面積是xm2,三角形

面積是ym2,則根據(jù)題意,可列出二元一次方程組為()

x+y-4=30x+y=26x+y-4=30x-y+4=30

(-4)=2(x-4)-(y-4)=2?(y-4)-(x-4)=2Dx-y=2

A.、D.

6.如圖,△ABC中,DE垂直平分AC交AB于E,NA=30。,ZACB=80°,則NBCE等于()

A.40°B.70°C.60°D.50°

7.隨著我國(guó)綜合國(guó)力的提升,中華文化影響日益增強(qiáng),學(xué)中文的外國(guó)人越來(lái)越多,中文已成為美國(guó)居民的第二外語(yǔ),

美國(guó)常講中文的人口約有210萬(wàn),請(qǐng)將“210萬(wàn)”用科學(xué)記數(shù)法表示為()

A.0.21x107B.2.1x106c21x105D2.1x107

8.如圖,△ABC中,AB=AC,BC=12cm,點(diǎn)D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,

點(diǎn)E、F分別落在邊AB、BC上,則4EBF的周長(zhǎng)是()cm.

9.如圖,AB是定長(zhǎng)線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在EF上取動(dòng)點(diǎn)G,

國(guó)點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()

A.正比例函數(shù)y=kx(k為常數(shù),k和,x>0)

B.一次函數(shù)丫=1?+6(k,b為常數(shù),kb/0,x>0)

k

C.反比例函數(shù)y=x(k為常數(shù),VO,x>0)

D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a#0,x>0)

10.如圖,G,E分別是正方形ABCD的邊AB,BC上的點(diǎn),且AG=CE,AE±EF,AE=EF,現(xiàn)有如下結(jié)論:①BE

=DH;②△AGEgZXECF;③/FCD=45。;④△GBEs^ECH.其中,正確的結(jié)論有()

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

二、填空題(共7小題,每小題3分,滿分21分)

11.如圖,A,B兩點(diǎn)被池塘隔開(kāi),不能直接測(cè)量其距離.于是,小明在岸邊選一點(diǎn)C,連接CA,CB,分別延長(zhǎng)到點(diǎn)

M,N,使AM=AC,BN=BC,測(cè)得MN=200m,則A,B間的距離為m.

12.二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a翔)的圖象如圖所示,則a+b+2c0(填“〉”"=”或“v").

V

13.有三個(gè)大小一樣的正六邊形,可按下列方式進(jìn)行拼接:

方式1:如圖1;

方式2:如圖2;

若有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)是______.有〃個(gè)邊長(zhǎng)均為1的正六邊形,

采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長(zhǎng)為18,則〃的最大值為.

14.如圖,一艘海輪位于燈塔P的北偏東方向60。,距離燈塔為4海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的

正東位置,海輪航行的距離AB長(zhǎng)海里.

15.函數(shù)’“E的自變量x的取值范圍是

16.二次根式中字母x的取值范圍是

17.已知x=2是關(guān)于x的一元二次方程kx2+(k2-2)x+2k+4=0的一個(gè)根,則k的值為.

三、解答題(共7小題,滿分69分)

18.(10分)如圖,已知NA=NB,AE=BE,點(diǎn)D在AC邊上,Z1=Z2,AE與BD相交于點(diǎn)O.求證:EC=ED.

19.(5分)如圖,AB為。0的直徑,點(diǎn)E在。O上,C為8E的中點(diǎn),過(guò)點(diǎn)C作直線CDLAE于D,連接AC、BC.

(1)試判斷直線CD與。0的位置關(guān)系,并說(shuō)明理由:

,求AB的長(zhǎng).

20.(8分)一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價(jià)10元/件,已知銷售價(jià)不低于成

本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元

/件)之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)求每天的銷售利潤(rùn)W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售

利潤(rùn)最大?最大利潤(rùn)是多少?

21.(10分)已知關(guān)于x的一元二次方程x2+2(m-1)x+m2-3=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若m為非負(fù)整數(shù),且該方程的根都是無(wú)理數(shù),求m的值.

22.(10分)如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)

C,線段BC與拋物線的對(duì)稱軸交于點(diǎn)E、P為線段BC上的一點(diǎn)(不與點(diǎn)B、C重合),過(guò)點(diǎn)P作PF〃y軸交拋物線于

點(diǎn)F,連結(jié)DF.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求此拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.

(2)求PF的長(zhǎng)度,用含m的代數(shù)式表示.

(3)當(dāng)四邊形PEDF為平行四邊形時(shí),求m的值.

c31

y=X2-2mx++-m—.

23.(12分)如圖,已知二次函數(shù)-84的圖象與x軸交于B兩點(diǎn)6在3左側(cè)),與丁軸交于

ADBC

(2)在(1)的條件下,在第二象限拋物線對(duì)稱軸左側(cè)上存在一點(diǎn)尸,使NPBA=2NBC0,求點(diǎn)P的坐標(biāo);

=3_£叵

(3)如圖2,將(1)中拋物線沿直線)一?,一彳向斜上方向平移工一個(gè)單位時(shí),點(diǎn)后為線段04上一動(dòng)點(diǎn),

軸交新拋物線于點(diǎn)尸,延長(zhǎng)尸5至G,且°E?AE=FEQE,若"EAG的外角平分線交點(diǎn)。在新拋物線上,求。點(diǎn)坐

標(biāo).

24.(14分)已知:a是-2的相反數(shù),b是-2的倒數(shù),則

(1)a=,b=;

(2)求代數(shù)式a2b+ab的值.

參考答案

一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)

1、A

【解析】

原式=3+6=3,

故選A

2、C

【解析】

二元一次方程組的解和解二元一次方程組,求代數(shù)式的值,算術(shù)平方根.

x=2mx+ny=S2m+n=Sm=3

{{{{

【分析】Vy=l是二元一次方程組加一機(jī))'=1的解,...2〃—團(tuán)=1,解得〃=2

J2〃?-〃=J2X3-2=4=2.即2加一"的算術(shù)平方根為1.故選C.

3、A

【解析】

試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DHJ_BC于H,

由于AD〃BC,NB=90。,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在RtADHC

中,利用勾股定理計(jì)算出DH=2J^,所以EF=S5

解:;分別以ED,EC為折痕將兩個(gè)角(/A,ZB)向內(nèi)折起,點(diǎn)A,B恰好落在CD邊的點(diǎn)F處,

;.EA=EF,BE=EF,DF=AD=3,CF=CB=5,

/.AB=2EF,DC=DF+CF=8,

作DH_LBC于H,

:AD〃BC,ZB=90°,

四邊形ABHD為矩形,

;.DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,

在RtADHC中,DHRDC?-HC2=2V15,

1

r.EF=2DH=V15.

點(diǎn)評(píng):本題考查了折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,

對(duì)應(yīng)邊和對(duì)應(yīng)角相等.也考查了勾股定理.

4、A

【解析】

畫(huà)出從正面看到的圖形即可得到它的主視圖.

【詳解】

這個(gè)幾何體的主視圖為:

故選:A.

【點(diǎn)睛】

本題考查了簡(jiǎn)單組合體的三視圖:畫(huà)簡(jiǎn)單組合體的三視圖要循序漸進(jìn),通過(guò)仔細(xì)觀察和想象,再畫(huà)它的三視圖.

5、A

【解析】

根據(jù)題意找到等量關(guān)系:①矩形面積1■三角形面積-陰影面積=30;②(矩形面積-陰影面積)-(三角形面積-陰影

面積)=4,據(jù)此列出方程組.

【詳解】

依題意得:

尤+y-4=30

(x-4)-(y-4)=2

故選A.

【點(diǎn)睛】

考查了由實(shí)際問(wèn)題抽象出二元一次方程組.根據(jù)實(shí)際問(wèn)題中的條件列方程組時(shí),要注意抓住題目中的一些關(guān)鍵性詞語(yǔ),

找出等量關(guān)系,列出方程組.

6、D

【解析】

根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出NA=NACE=30。,代入NBCE=/ACB-NACE求出即可.

【詳解】

,/DE垂直平分AC交AB于E,

/.AE=CE,

???ZA=ZACE,

ZA=30°,

???ZACE=30°,

ZACB=80°,

???ZBCE=ZACB-ZACE=50°,

故選D.

【點(diǎn)睛】

本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相

等.

7、B

【解析】

【分析】科學(xué)記數(shù)法的表示形式為axlOn的形式,其中n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小

數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí)一,n

是負(fù)數(shù).

【詳解】21075=2100000,

2100000=2.1x106,

故選B.

【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為axlOn的形式,其中n為整數(shù),表示時(shí)

關(guān)鍵要正確確定a的值以及n的值.

8、C

【解析】

直接利用平移的性質(zhì)得出EF=DC=4cm,進(jìn)而得出BE=EF=4cm,進(jìn)而求出答案.

【詳解】

???將線段DC沿著CB的方向平移7cm得到線段EF,

EF=DC=4cm,FC=7cm,

VAB=AC,BC=12cm,

/.ZB=ZC,BF=5cm,

/.ZB=ZBFE,

BE=EF=4cm>

.?.△EBF的周長(zhǎng)為:4+4+5=13(cm).

故選C.

【點(diǎn)睛】

此題主要考查了平移的性質(zhì),根據(jù)題意得出BE的長(zhǎng)是解題關(guān)鍵.

9、C

【解析】

延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,0Q,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與E0垂

直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角

相等得到NA=NB,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由0為底邊AB的中點(diǎn),利用三線合一得到

Q0垂直于AB,得到一對(duì)直角相等,再由NFQO與/OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角

形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到

/QOE=NQOF=/A=/B,再由切線長(zhǎng)定理得到0D與0C分別為/EOG與/FOG的平分線,得到NDOC為/EOF

的一半,即NDOC=NA=NB,又NGCO=NFCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形

DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將A0與0B換

為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).

【詳解】

延長(zhǎng)AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,0Q,

0

:.ZAEO=ZBFO=90°,

在RtAAEO和RtABFO中,

AE=BF

.JOEOF

?,

/.RtAAEO絲RsBFO(HL),

;.NA=/B,

/.△QAB為等腰三角形,

又二0為AB的中點(diǎn),即AO=BO,

.".QO1AB,

.".ZQOB=ZQFO=90°,

XVZOQF=ZBQO,

/.△QOF^AQBO,

/.ZB=ZQOF,

同理可以得到/A=NQOE,

,ZQOF=ZQOE,

根據(jù)切線長(zhǎng)定理得:0D平分NEOG,0C平分NGOF,

1

/.ZDOC=2ZEOF=ZA=ZB,

XVZGCO=ZFCO,

/.△DOC^AOBC,

同理可以得到△DOCs/\DAO,

/.△DAO^AOBC,

ADAO

???~OB~BC,

11

,AD?BC=AOOB=4AB2,即xy=4AB2為定值,

1£

設(shè)k=4AB2,得到y(tǒng)=x,

k

則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=x(k為常數(shù),k#),x>0).

故選C.

【點(diǎn)睛】

本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線長(zhǎng)定理,直角三角形全等的判定與性質(zhì),反比

例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).

10、C

【解析】

由/BEG=45。知/BEA>45。,結(jié)合NAEF=90。得NHECV45。,據(jù)此知HC<EC,即可判斷①;求出NGAE+/AEG

=45°,推出NGAE=NFEC,根據(jù)SAS推出AGAE絲△CEF,即可判斷②;求出NAGE=NECF=135。,即可判斷

③;求出NFECV45。,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.

【詳解】

解:?.?四邊形ABCD是正方形,

AAB=BC=CD,

VAG=GE,

BG=BE,

;./BEG=45。,

ZBEA>45°,

VZAEF=90°,

/HEC<45。,

.?.HCVEC,

ACD-CH>BC-CE,即DH>BE,故①錯(cuò)誤;

VBG=BE,ZB=90°,

,/BGE=/BEG=45。,

/.ZAGE=135°,

,/GAE+NAEG=45。,

VAE±EF,

/.ZAEF=90°,

VZBEG=45°,

/.ZAEG+ZFEC=45O,

/.ZGAE=ZFEC,

在^GAE和4CEF中,

;AG=CE,

ZGAE=ZCEF,

AE=EF,

AAGAE^ACEF(SAS)),

...②正確;

.?./AGE=/ECF=135°,

.,.ZFCD=135°-90°=45°,

...③正確;

VZBGE=ZBEG=45°,ZAEG+ZFEC=45°,

.?./FECV45。,

AAGBE和4ECH不相似,

.?.④錯(cuò)誤;

故選:C.

【點(diǎn)晴】

本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識(shí)點(diǎn)的

綜合運(yùn)用,綜合比較強(qiáng),難度較大.

二、填空題(共7小題,每小題3分,滿分21分)

11、1

【解析】

VAM=AC,BN=BC,AB是△ABC的中位線,

1

;.AB=2MN=lm,

故答案為1.

12、<

【解析】

由拋物線開(kāi)口向下,貝iJa<0,拋物線與y軸交于y軸負(fù)半軸,則c<0,對(duì)稱軸在y軸左側(cè),貝Ub<0,因此可判斷a+b+2c

與0的大小

【詳解】

?.?拋物線開(kāi)口向下

/.a<0

?.?拋物線與y軸交于y軸負(fù)半軸,

/.c<0

?.?對(duì)稱軸在y軸左側(cè)

b

-2a<0

/.b<0

:.a+b+2c<0

故答案為<.

【點(diǎn)睛】

本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,正確利用圖象得出正確信息是解題關(guān)鍵.

13、181

【解析】

有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,利用4n+2的規(guī)律計(jì)算;把六個(gè)正六邊形圍著一個(gè)正六邊按照方式2

進(jìn)行拼接可使周長(zhǎng)為8,六邊形的個(gè)數(shù)最多.

【詳解】

解:有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)為4x4+2=18;

按下圖拼接,圖案的外輪廓的周長(zhǎng)為18,此時(shí)正六邊形的個(gè)數(shù)最多,即n的最大值為1.

故答案為:18;1.

【點(diǎn)晴】

本題考查了正多邊形和圓,以及圖形的變化類規(guī)律總結(jié)問(wèn)題,根據(jù)題意,得出規(guī)律是解決此題的關(guān)鍵.

14、1

【解析】

分析:首先由方向角的定義及已知條件得出/NPA=60。,AP=4海里,ZABP=90°,再由AB〃NP,根據(jù)平行線的性質(zhì)

得出/A=/NPA=60。.然后解RSABP,得出AB=AP?cos/A=l海里.

詳解:如圖,由題意可知NNPA=60。,AP=4海里,ZABP=90°.

:AB〃NP,

NA=NNPA=60°.

在RtAABP中,VZABP=90°,ZA=60°,AP=4海里,

1

AB=AP?cosZA=4xcos600=4x=1海里.

故答案為1.

點(diǎn)睛:本題考查了解直角三角形的應(yīng)用-方向角問(wèn)題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題

的關(guān)鍵.

15、x>l

【解析】

依題意可得解得所以函數(shù)的自變量》的取值范圍題,/

16、x<l

【解析】

二次根式有意義的條件就是被開(kāi)方數(shù)是非負(fù)數(shù),即可求解.

【詳解】

根據(jù)題意得:1-xNO,

解得爛1.

故答案為:x<l

【點(diǎn)睛】

主要考查了二次根式的意義和性質(zhì).性質(zhì):二次根式中的被開(kāi)方數(shù)必須是非負(fù)數(shù),否則二次根式無(wú)意義.

17、-1

【解析】【分析】把x=2代入kx2+(k2-2)x+2k+4=0得4k+2k2-4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次

方程的定義確定k的值即可.

【詳解】把x=2代入kx2+(k2-2)x+2k+4=0得4k+2k2-4+2k+4=0,

整理得k2+lk=0,解得kl=O,k2=-1,

因?yàn)閗于Q

所以k的值為-1.

故答案為:-1.

【點(diǎn)睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一

元二次方程的解.

三、解答題(共7小題,滿分69分)

18、見(jiàn)解析

【解析】

由Nl=/2,可得/BED=NAEC,根據(jù)利用ASA可判定△BED絲ZiAEC,然后根據(jù)全等三角形的性質(zhì)即可得證.

【詳解】

解:VZ1=Z2,

/.Z1+ZAED=Z2+ZAED,

即NBED=NAEC,

在^BEDAEC中,

2B=NA

?BE=AE

,ZBED=ZAEC,

/.△BED^AAEC(ASA),

;.ED=EC.

【點(diǎn)睛】

本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角

形的性質(zhì)(即全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等)是解題的關(guān)鍵.

19、(1)證明見(jiàn)解析(2)3

【解析】

(1)連接℃,由。為求的中點(diǎn),得到N1=N2,等量代換得到N2=4C°,根據(jù)平行線的性質(zhì)得到℃,,

即可得到結(jié)論;

(2)連接",由勾股定理得到CQ=JAC2-A£>2=板,根據(jù)切割線定理得到=,根據(jù)勾股定理得到

CE=JCQ2+QE2=#,由圓周角定理得到44cB=90°,即可得到結(jié)論.

【詳解】

1相切,連接",

,:C為BE的中點(diǎn),

???Z1=Z2,

.?.OA=OC,

...Z1=ZACO

.../2=ZAC。

.ADIIOC

..CD1AD

?OCLCD

,直線°。與相切;

6)方法1:連接CJ

??A。=2AC=>/6

?f,

???ZADC=90,

.CD=JAC2-A》=72

是。。的切線,

???CD2=ADDE,

???DE=1,

.CE=JCD2+DE2=事

?;C為8E的中點(diǎn),

..BC=CE=W,

':AB為。°的直徑,

???ZACB=90,

...AB=、AC2+BC2=3

方法2:?.?/℃4=

易得△ADC^^ACB

AD_AC

???~AC~~AB,

?AB=3

【點(diǎn)睛】

本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,勾股定理,平行線的性質(zhì),切割線定理,熟練掌

握各定理是解題的關(guān)鍵.

20、(1)v-x+40(10<x<16).(2)每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.

【解析】

根據(jù)題可設(shè)出一般式,再由圖中數(shù)據(jù)帶入可得答案,根據(jù)題目中的x的取值可得結(jié)果.②由總利潤(rùn)=數(shù)量x單間商品的利

潤(rùn)可得函數(shù)式,可得解析式為一元二次式,配成頂點(diǎn)式可求出最大利潤(rùn)時(shí)的銷售價(jià),即可得出答案

【詳解】

(1)y+40(10<x<16)

(2)根據(jù)題意,得:w(x-10)y

二6?-10)(-x+40)

=-x'+50x-400

"+225

-1<0

:.學(xué)〈25時(shí),巾隨X的增大而增大

10<x<16

.?.當(dāng)x/6時(shí),歹取得最大值,最大值是144

答:每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.

【點(diǎn)睛】

熟悉掌握?qǐng)D中所給信息以及列方程組是解決本題的關(guān)鍵.

21、(1)m<2;(2)m=l.

【解析】

(1)利用方程有兩個(gè)不相等的實(shí)數(shù)根,得A=[2(m-1)J2-4(m2-3)=-8m+2>3,然后解不等式即可;

(2)先利用m的范圍得到m=3或m=l,再分別求出m=3和m=l時(shí)方程的根,然后根據(jù)根的情況確定滿足條件的m

的值.

【詳解】

(1)△=[2(m-1)]2-4(m2-3)=-8m+2.

???方程有兩個(gè)不相等的實(shí)數(shù)根,

.,?△>3.

即-8m+2>3.

解得m<2;

(2)Vm<2,且m為非負(fù)整數(shù),

m=3或m=l,

當(dāng)m=3時(shí),原方程為x2-2x-3=3,

解得xl=3,x2=-1(不符合題意舍去),當(dāng)m=l時(shí),原方程為x2-2=3,

解得xl=a,x2=-,

綜上所述,m=l.

【點(diǎn)睛】

本題考查了根的判別式:一元二次方程ax2+bx+c=3(a#3的根與△=b2-4ac有如下關(guān)系:當(dāng)△>3時(shí),方程有兩個(gè)不

相等的實(shí)數(shù)根;當(dāng)A=3時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)A<3時(shí),方程無(wú)實(shí)數(shù)根.

22、(1)y=-x2+2x+l;(2)-m2+lm.(1)2.

【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

(2)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得C點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)之間的距離是較大的縱坐標(biāo)減較

的縱坐標(biāo),可得答案;

(1)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得F點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)之間的距離是較大的縱坐標(biāo)減較

的縱坐標(biāo),可得DE的長(zhǎng),根據(jù)平行四邊形的對(duì)邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.

【詳解】

解:(1);點(diǎn)A(-1,0),點(diǎn)B(1,0)在拋物線y=-x2+bx+c上,

-l+6+c=0怏=2

J-9+3b+c=0,解得[。=3,

此拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+l;

(2)???此拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+1,

AC(0,1).

設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點(diǎn)的坐標(biāo)代入函數(shù)解析式,得

3k+Z?=0k=一1

b=3,解得1=3,

即BC的函數(shù)解析式為y=-x+l.

由P在BC上,F(xiàn)在拋物線上,得

P(m,-m+1),F(m,-m2+2m+l).

PF=-m2+2m+l-(-m+1)=-m2+lm.

???此拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+l,

AD(1,4).

???線段BC與拋物線的對(duì)稱軸交于點(diǎn)E,

當(dāng)x=l時(shí),y=-x+l=2,

:.E(1,2),

.\DE=4-2=2.

由四邊形PEDF為平行四邊形,得

PF=DE,即-m2+lm=2,

解得ml=l,m2=2.

當(dāng)m=l時(shí),線段PF與DE重合,m=l(不符合題意,舍).

當(dāng)m=2時(shí),四邊形PEDF為平行四邊形.

考點(diǎn):二次函數(shù)綜合題.

15333

23、(1)4;(2)4,16.(3)4.

【解析】

(1)過(guò)點(diǎn)D作DE,x軸于點(diǎn)E,求出二次函數(shù)的頂點(diǎn)D的坐標(biāo),然后求出A、B、C的坐標(biāo),然后根據(jù)5=S+S

^BCAABD

即可得出結(jié)論;

(2)設(shè)點(diǎn)P(S+4f+3)是第二象限拋物線對(duì)稱軸左側(cè)上一點(diǎn),將MOC沿y軸翻折得到ACOE,點(diǎn)"(1,0),連接CE

過(guò)點(diǎn)8作8CCE于尸,過(guò)點(diǎn)尸作尸G'x軸于G,證出APBGSABCF,列表比例式,并找出關(guān)于t的方程即可得

出結(jié)論;

=3

(3)判斷點(diǎn)D在直線)"s'Z上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點(diǎn)“011,。),7(%0),

過(guò)點(diǎn)。作°”,EG于M,QSJ.4G于S,。/_1》軸于丁,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而

求出結(jié)論.

【詳解】

解:(1)過(guò)點(diǎn)D作DEJ_x軸于點(diǎn)E

當(dāng)加=一2時(shí),得至|jy=m+4x+3=(x+2”-1

頂點(diǎn)。(一21),

ADE=1

由x2+4x+3=0,得\=-3」=-1;

令x=0,得y=3;

A(-3,0)C(0,3)

,,,

AB=2,QC=3

:.S=S+S=-ABxOC+-ABxDE=4

MBC^ABD22

(2)如圖1,設(shè)點(diǎn)尸"戶+4'+3)是第二象限拋物線對(duì)稱軸左側(cè)上一點(diǎn),將ABOC沿y軸翻折得到AC°E,點(diǎn)七(1,0),

于F,過(guò)點(diǎn)尸作PG'x軸于G

:"BCF=2/BCO;

?.,/PBA=2/BCO,

;"PBA=NBCF,

???PG,x軸,BFICEf

;.NPGB=NBFC=90。,

:.bPBGsbBCF,

PG_BF

/.BG~CF

由勾股定理得:BC=EC=\IOE2+OC2=4+3;=,

,/COxBE=BFxCE

“OCxBE3x23而

BF..---------------==-------

CEyjiO5,

CF=VBO-

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論