2023-2024學(xué)年山西省忻州市定襄中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁(yè)
2023-2024學(xué)年山西省忻州市定襄中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁(yè)
2023-2024學(xué)年山西省忻州市定襄中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁(yè)
2023-2024學(xué)年山西省忻州市定襄中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁(yè)
2023-2024學(xué)年山西省忻州市定襄中學(xué)中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年山西省忻州市定襄中學(xué)中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.的相反數(shù)是()A. B.- C. D.-2.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點(diǎn)E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°3.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數(shù)學(xué)知識(shí)是()A.兩點(diǎn)之間的所有連線中,線段最短B.經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線C.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短D.經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直4.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.5.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°6.下列計(jì)算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+17.一、單選題二次函數(shù)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)8.把邊長(zhǎng)相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長(zhǎng)LG交AF于點(diǎn)P,則∠APG=()A.141° B.144° C.147° D.150°9.下列四個(gè)幾何體,正視圖與其它三個(gè)不同的幾何體是()A. B.C. D.10.一組數(shù)據(jù)是4,x,5,10,11共五個(gè)數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.11二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在直角坐標(biāo)系中,正方形的中心在原點(diǎn)O,且正方形的一組對(duì)邊與x軸平行,點(diǎn)P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個(gè)交點(diǎn).若圖中陰影部分的面積等于9,則這個(gè)反比例函數(shù)的解析式為▲.12.如圖,已知,要使,還需添加一個(gè)條件,則可以添加的條件是.(只寫一個(gè)即可,不需要添加輔助線)13.計(jì)算的結(jié)果等于__________.14.以下兩題任選一題作答:(1).下圖是某商場(chǎng)一樓二樓之間的手扶電梯示意圖,其中AB、CD分別表示一樓、二樓地面的水平,∠ABC=150°,BC的長(zhǎng)是8m,則乘電梯次點(diǎn)B到點(diǎn)C上升的高度h是_____m.(2).一個(gè)多邊形的每一個(gè)內(nèi)角都是與它相鄰?fù)饨堑?倍,則多邊形是_____邊形.15.如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF=__.16.若a、b為實(shí)數(shù),且b=+4,則a+b=_____.三、解答題(共8題,共72分)17.(8分)如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).(1)求一次函數(shù)的解析式;(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B,C,連接AB,若△ABC是等腰直角三角形,求n的值.18.(8分)計(jì)算:()-1+()0+-2cos30°.19.(8分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).(1)求點(diǎn)B的坐標(biāo);(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.20.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對(duì)角線,直線AE與直線BF交于點(diǎn)H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時(shí),(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過程中,當(dāng)A、E、F三點(diǎn)共線時(shí),請(qǐng)直接寫出點(diǎn)B到直線AE的距離.21.(8分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.22.(10分)為評(píng)估九年級(jí)學(xué)生的體育成績(jī)情況,某校九年級(jí)500名學(xué)生全部參加了“中考體育模擬考試”,隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本,并繪制出如下兩幅不完整的統(tǒng)計(jì)表和頻數(shù)分布直方圖:成績(jī)x分人數(shù)頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學(xué)生的成績(jī);(2)通過計(jì)算將頻數(shù)分布直方圖補(bǔ)充完整;(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,請(qǐng)估計(jì)本次測(cè)試九年級(jí)學(xué)生中成績(jī)優(yōu)秀的人數(shù).23.(12分)如圖,己知AB是⊙C的直徑,C為圓上一點(diǎn),D是BC的中點(diǎn),CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結(jié)EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求24.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當(dāng)PB∥CD時(shí),點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+∠CBO=180°,求Q點(diǎn)坐標(biāo).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.2、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補(bǔ),并根據(jù)已知∠ACD=40°計(jì)算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進(jìn)而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補(bǔ).3、B【解析】

本題要根據(jù)過平面上的兩點(diǎn)有且只有一條直線的性質(zhì)解答.【詳解】根據(jù)兩點(diǎn)確定一條直線.故選:B.【點(diǎn)睛】本題考查了“兩點(diǎn)確定一條直線”的公理,難度適中.4、B【解析】

根據(jù)題意畫出圖形,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長(zhǎng),由垂徑定理表示出BC的長(zhǎng),然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長(zhǎng)交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長(zhǎng),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.5、C【解析】

先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.6、C【解析】

解:A.故錯(cuò)誤;B.故錯(cuò)誤;C.正確;D.故選C.【點(diǎn)睛】本題考查合并同類項(xiàng),同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計(jì)算,掌握運(yùn)算法則正確計(jì)算是解題關(guān)鍵.7、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個(gè)交點(diǎn),故正確;③∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴拋物線上x=0時(shí)的點(diǎn)與當(dāng)x=2時(shí)的點(diǎn)對(duì)稱,即當(dāng)x=2時(shí),y>0∴4a+2b+c>0,故錯(cuò)誤;④∵二次函數(shù)圖象的對(duì)稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個(gè).故選B.8、B【解析】

先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個(gè)內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點(diǎn)睛】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).9、C【解析】

根據(jù)幾何體的三視圖畫法先畫出物體的正視圖再解答.【詳解】解:A、B、D三個(gè)幾何體的主視圖是由左上一個(gè)正方形、下方兩個(gè)正方形構(gòu)成的,而C選項(xiàng)的幾何體是由上方2個(gè)正方形、下方2個(gè)正方形構(gòu)成的,故選:C.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)幾何體三視圖的理解,掌握幾何體的主視圖是解題的關(guān)鍵.10、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點(diǎn):3.眾數(shù);3.算術(shù)平均數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、.【解析】待定系數(shù)法,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,反比例函數(shù)圖象的對(duì)稱性,正方形的性質(zhì).【分析】由反比例函數(shù)的對(duì)稱性可知陰影部分的面積和正好為小正方形面積的,設(shè)小正方形的邊長(zhǎng)為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達(dá)式,再根據(jù)點(diǎn)P(2a,a)在直線AB上可求出a的值,從而得出反比例函數(shù)的解析式:∵反比例函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,∴陰影部分的面積和正好為小正方形的面積.設(shè)正方形的邊長(zhǎng)為b,則b2=9,解得b=3.∵正方形的中心在原點(diǎn)O,∴直線AB的解析式為:x=2.∵點(diǎn)P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點(diǎn)P在反比例函數(shù)(k>0)的圖象上,∴k=2×3=2.∴此反比例函數(shù)的解析式為:.12、可添∠ABD=∠CBD或AD=CD.【解析】

由AB=BC結(jié)合圖形可知這兩個(gè)三角形有兩組邊對(duì)應(yīng)相等,添加一組邊利用SSS證明全等,也可以添加一對(duì)夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點(diǎn)睛】本題考查了三角形全等的判定,結(jié)合圖形與已知條件靈活應(yīng)用全等三角形的判定方法是解題的關(guān)鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.13、【解析】

根據(jù)完全平方公式進(jìn)行展開,然后再進(jìn)行同類項(xiàng)合并即可.【詳解】解:.故填.【點(diǎn)睛】主要考查的是完全平方公式及二次根式的混合運(yùn)算,注意最終結(jié)果要化成最簡(jiǎn)二次根式的形式.14、48【解析】

(1)先求出斜邊的坡角為30°,再利用含30°的直角三角形即可求解;(2)設(shè)這個(gè)多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為故可列出方程求解.【詳解】(1)∵∠ABC=150°,∴斜面BC的坡角為30°,∴h==4m(2)設(shè)這個(gè)多邊形邊上為n,則內(nèi)角和為(n-2)×180°,外角度數(shù)為依題意得解得n=8故為八邊形.【點(diǎn)睛】此題主要考查含30°的直角三角形與多邊形的內(nèi)角和計(jì)算,解題的關(guān)鍵是熟知含30°的直角三角形的性質(zhì)與多邊形的內(nèi)角和公式.15、15°【解析】

根據(jù)平行四邊形的性質(zhì)和圓的半徑相等得到△AOB為等邊三角形,根據(jù)等腰三角形的三線合一得到∠BOF=∠AOF=30°,根據(jù)圓周角定理計(jì)算即可.【詳解】解答:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圓周角定理得,故答案為15°.16、5或1【解析】

根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0,分母不等于0,可以求出a的值,b的值,根據(jù)有理數(shù)的加法,可得答案.【詳解】由被開方數(shù)是非負(fù)數(shù),得,解得a=1,或a=﹣1,b=4,當(dāng)a=1時(shí),a+b=1+4=5,當(dāng)a=﹣1時(shí),a+b=﹣1+4=1,故答案為5或1.【點(diǎn)睛】本題考查了函數(shù)表達(dá)式有意義的條件,當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù).三、解答題(共8題,共72分)17、(1)y=x﹣3(2)1【解析】

(1)由已知先求出a,得出點(diǎn)A的坐標(biāo),再把A的坐標(biāo)代入一次函數(shù)y=kx-3求出k的值即可求出一次函數(shù)的解析式;(2)易求點(diǎn)B、C的坐標(biāo)分別為(n,),(n,n-3).設(shè)直線y=x-3與x軸、y軸分別交于點(diǎn)D、E,易得OD=OE=3,那么∠OED=45°.根據(jù)平行線的性質(zhì)得到∠BCA=∠OED=45°,所以當(dāng)△ABC是等腰直角三角形時(shí)只有AB=AC一種情況.過點(diǎn)A作AF⊥BC于F,根據(jù)等腰三角形三線合一的性質(zhì)得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【詳解】解:(1)∵反比例y=的圖象過點(diǎn)A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數(shù)y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數(shù)的解析式為y=x﹣3;(2)由題意可知,點(diǎn)B、C的坐標(biāo)分別為(n,),(n,n﹣3).設(shè)直線y=x﹣3與x軸、y軸分別交于點(diǎn)D、E,如圖,當(dāng)x=0時(shí),y=﹣3;當(dāng)y=0時(shí),x=3,∴OD=OE,∴∠OED=45°.∵直線x=n平行于y軸,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一種情況,過點(diǎn)A作AF⊥BC于F,則BF=FC,F(xiàn)(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求一次函數(shù)的解析式,等腰直角三角形的性質(zhì),難度適中.18、4+2.【解析】

原式第一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,第二項(xiàng)利用零指數(shù)冪法則計(jì)算,第三項(xiàng)化為最簡(jiǎn)二次根式,最后一項(xiàng)利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.【詳解】原式=3+1+3-2×=4+2.19、(1)B(-1.2);(2)y=;(3)見解析.【解析】

(1)過A作AC⊥x軸于點(diǎn)C,過B作BD⊥x軸于點(diǎn)D,則可證明△ACO≌△ODB,則可求得OD和BD的長(zhǎng),可求得B點(diǎn)坐標(biāo);(2)根據(jù)A、B、O三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點(diǎn)P在線段AO的下方,過P作PE∥y軸交線段OA于點(diǎn)E,可求得直線OA解析式,設(shè)出P點(diǎn)坐標(biāo),則可表示出E點(diǎn)坐標(biāo),可表示出PE的長(zhǎng),進(jìn)一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時(shí)P點(diǎn)的坐標(biāo).【詳解】(1)如圖1,過A作AC⊥x軸于點(diǎn)C,過B作BD⊥x軸于點(diǎn)D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點(diǎn),∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點(diǎn)坐標(biāo)代入可得,解得,∴經(jīng)過A、B、O原點(diǎn)的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點(diǎn)P在線段OA的下方,過P作PE∥y軸交AO于點(diǎn)E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點(diǎn)坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時(shí),四邊形ABOP的面積最大,此時(shí)P點(diǎn)坐標(biāo)為(1,-),綜上可知存在使四邊形ABOP的面積最大的點(diǎn)P,其坐標(biāo)為(1,-).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識(shí).在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應(yīng)用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.20、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因?yàn)椤螩BA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因?yàn)椤螩BA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因?yàn)锳、E、F三點(diǎn)共線,及∠AFB=30°,∠AFC=90°,進(jìn)而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點(diǎn)共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點(diǎn)共線時(shí),點(diǎn)B到直線AE的距離為.【點(diǎn)睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點(diǎn)共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點(diǎn)共線問題是解題的關(guān)鍵.本題屬于中等偏難.21、(1)詳見解析;(2);(3)【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;

(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)M與A重合時(shí),得到d+f=12,當(dāng)M與B重合時(shí),得到d+f=9,于是得到結(jié)論.【詳解】(1)連接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切線,AB是⊙O的直徑,

∴∠OBP=90°,

在△POC與△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切線;

(2)過O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD?OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP?OP=OC2

∴,

∴sin∠CPO=;

(3)連接BC,

∵AB是⊙O的直徑,

∴AC⊥BC,

∵AC=9,AB=1,

∴BC==12,

當(dāng)CM⊥AB時(shí),

d=AM,f=BM,

∴d+f=AM+BM=1,

當(dāng)M與B重合時(shí),

d=9,f=0,

∴d+f=9,

∴d+f的取值范圍是:9≤d+f≤1.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),圓周角定理,正確的作出輔助線是解題的關(guān)鍵.22、(1)50;(2)詳見解析;(3)220.【解析】

(1)利用1組的人數(shù)除以1組的頻率可求此次抽查了多少名學(xué)生的成績(jī);(2)根據(jù)總數(shù)乘以3組的頻率可求a,用50減去其它各組的頻數(shù)即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數(shù)分布直方圖補(bǔ)充完整;(3)先得到成績(jī)優(yōu)秀的頻率,再乘以500即可求解.【詳解】解:(1)4÷0.08=50(名).答:此次抽查了50名學(xué)生的成績(jī);(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如圖所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次測(cè)試九年級(jí)學(xué)生中成績(jī)優(yōu)秀的人數(shù)是220名.【點(diǎn)睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計(jì)圖表。23、(1)證明見解析;(2)EH=【解析】

(1)由題意推出∠EHB=∠OCB,(2)結(jié)合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點(diǎn),∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓與相似三角形,解題的關(guān)鍵是熟練的掌握?qǐng)A與相似三角形.24、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論