浙江省永康市2024屆中考數(shù)學(xué)猜題卷含解析_第1頁
浙江省永康市2024屆中考數(shù)學(xué)猜題卷含解析_第2頁
浙江省永康市2024屆中考數(shù)學(xué)猜題卷含解析_第3頁
浙江省永康市2024屆中考數(shù)學(xué)猜題卷含解析_第4頁
浙江省永康市2024屆中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省永康市2024屆中考數(shù)學(xué)猜題卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果關(guān)于x的方程x2﹣x+1=0有實(shí)數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥42.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.3.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°4.如圖所示是8個(gè)完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.5.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖像可能是()A. B. C. D.6.計(jì)算3–(–9)的結(jié)果是()A.12 B.–12 C.6 D.–67.一、單選題如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AED,則BE的長(zhǎng)為()A.5 B.4 C.3 D.28.如圖,⊙O的半徑OC與弦AB交于點(diǎn)D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分9.某校40名學(xué)生參加科普知識(shí)競(jìng)賽(競(jìng)賽分?jǐn)?shù)都是整數(shù)),競(jìng)賽成績(jī)的頻數(shù)分布直方圖如圖所示,成績(jī)的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分10.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°11.魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時(shí),其周長(zhǎng)就無限接近圓的周長(zhǎng),進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時(shí),得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時(shí)是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π12.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.因式分解:a3﹣2a2b+ab2=_____.14.不等式組的解集是__.15.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.16.計(jì)算(﹣3)+(﹣9)的結(jié)果為______.17.如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個(gè)數(shù)是______.18.若a2+3=2b,則a3﹣2ab+3a=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點(diǎn)的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長(zhǎng)為.20.(6分)近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號(hào)單車的車架新投放時(shí)的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)(2)根據(jù)經(jīng)驗(yàn),當(dāng)車座E到CB的距離調(diào)整至等于人體胯高(腿長(zhǎng))的0.85時(shí),坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長(zhǎng).(結(jié)果精確到0.1cm)(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)21.(6分)如圖,在自動(dòng)向西的公路l上有一檢查站A,在觀測(cè)點(diǎn)B的南偏西53°方向,檢查站一工作人員家住在與觀測(cè)點(diǎn)B的距離為7km,位于點(diǎn)B南偏西76°方向的點(diǎn)C處,求工作人員家到檢查站的距離AC.(參考數(shù)據(jù):sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)22.(8分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其對(duì)稱軸交拋物線于點(diǎn)D,交x軸于點(diǎn)E,已知OB=OC=1.(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);(2)連接BD,F(xiàn)為拋物線上一動(dòng)點(diǎn),當(dāng)∠FAB=∠EDB時(shí),求點(diǎn)F的坐標(biāo);(3)平行于x軸的直線交拋物線于M、N兩點(diǎn),以線段MN為對(duì)角線作菱形MPNQ,當(dāng)點(diǎn)P在x軸上,且PQ=MN時(shí),求菱形對(duì)角線MN的長(zhǎng).23.(8分)為實(shí)施“農(nóng)村留守兒童關(guān)愛計(jì)劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計(jì)圖補(bǔ)充完整;某愛心人士決定從只有2名留守兒童的這些班級(jí)中,任選兩名進(jìn)行生活資助,請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個(gè)班級(jí)的概率.24.(10分)(1)計(jì)算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡(jiǎn),再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.25.(10分)(1)計(jì)算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡(jiǎn),再求值:÷(2+),其中a=.26.(12分)如圖,已知A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于點(diǎn)B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長(zhǎng).27.(12分)為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試同時(shí)聽寫100個(gè)漢字,每正確聽寫出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)椋ǚ郑?,且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:組別

成績(jī)(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請(qǐng)根據(jù)表格提供的信息,解答以下問題:本次決賽共有名學(xué)生參加;直接寫出表中a=,b=;請(qǐng)補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

由被開方數(shù)非負(fù)結(jié)合根的判別式△≥0,即可得出關(guān)于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的方程x2-x+1=0有實(shí)數(shù)根,∴,解得:k≥1.故選D.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△≥0時(shí),方程有實(shí)數(shù)根”是解題的關(guān)鍵.2、B【解析】

設(shè)以AB、AC為直徑作半圓交BC于D點(diǎn),連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.3、B【解析】

根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質(zhì)即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點(diǎn)睛】此題考查三角形內(nèi)角和,平行線的性質(zhì),解題關(guān)鍵在于利用平行線的性質(zhì)得到角相等4、A【解析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點(diǎn)睛:本題考查了學(xué)生的思考能力和對(duì)幾何體三種視圖的空間想象能力.5、D【解析】

本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點(diǎn)應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點(diǎn)也應(yīng)為(0,c),圖象不符合,故本選項(xiàng)錯(cuò)誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點(diǎn)相同,故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查拋物線和直線的性質(zhì),用假設(shè)法來搞定這種數(shù)形結(jié)合題是一種很好的方法.6、A【解析】

根據(jù)有理數(shù)的減法,即可解答.【詳解】故選A.【點(diǎn)睛】本題考查了有理數(shù)的減法,解決本題的關(guān)鍵是熟記減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù).7、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),主要利用了旋轉(zhuǎn)前后對(duì)應(yīng)邊相等以及旋轉(zhuǎn)角的定義.8、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項(xiàng)中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項(xiàng)中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項(xiàng)中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項(xiàng)中的條件能夠判定四邊形OACB是菱形.故選C.9、C【解析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個(gè),則其中位數(shù)為第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個(gè),則其中位數(shù)為第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),所以中位數(shù)落在70.5~80.5分.故選C.點(diǎn)睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關(guān)鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).10、C【解析】試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點(diǎn):旋轉(zhuǎn)的性質(zhì).11、C【解析】

連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計(jì)算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長(zhǎng):圓的直徑=6CD:2CD=3,故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.12、D【解析】

根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進(jìn)行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點(diǎn)睛】本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.14、2≤x<1【解析】

分別解兩個(gè)不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點(diǎn)睛】本題考查了解一元一次不等式組:解一元一次不等式組時(shí),一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.15、a<﹣1【解析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點(diǎn)睛:本題主要考查解一元一次不等式,解答此題的關(guān)鍵是掌握不等式的性質(zhì),再不等式兩邊同加或同減一個(gè)數(shù)或式子,不等號(hào)的方向不變,在不等式的兩邊同乘或同除一個(gè)正數(shù)或式子,不等號(hào)的方向不變,在不等式的兩邊同乘或同除一個(gè)負(fù)數(shù)或式子,不等號(hào)的方向改變.16、-1【解析】試題分析:利用同號(hào)兩數(shù)相加的法則計(jì)算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.17、①②③④.【解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對(duì)應(yīng)邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.18、1【解析】

利用提公因式法將多項(xiàng)式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【點(diǎn)睛】本題考查了因式分解的應(yīng)用,利用提公因式法將多項(xiàng)式分解是本題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)【解析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長(zhǎng)度,在Rt△ODB中BD=,可求得BD的長(zhǎng),由CD=CB﹣BD可得CD的長(zhǎng),在RT△ACD中,AD=,即可求出AD長(zhǎng)度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點(diǎn)睛】本題主要考查圓中的計(jì)算問題、菱形以及相似三角形的判定與性質(zhì)20、(1)81cm;(2)8.6cm;【解析】

(1)作EM⊥BC于點(diǎn)M,由EM=ECsin∠BCE可得答案;(2)作E′H⊥BC于點(diǎn)H,先根據(jù)E′C=求得E′C的長(zhǎng)度,再根據(jù)EE′=CE′﹣CE可得答案.【詳解】(1)如圖1,過點(diǎn)E作EM⊥BC于點(diǎn)M.由題意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,則單車車座E到地面的高度為51.3+30≈81cm;(2)如圖2所示,過點(diǎn)E′作E′H⊥BC于點(diǎn)H.由題意知E′H=70×0.85=59.5,則E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用銳角三角函數(shù)進(jìn)行解答.21、工作人員家到檢查站的距離AC的長(zhǎng)約為km.【解析】分析:過點(diǎn)B作BH⊥l交l于點(diǎn)H,解Rt△BCH,得出CH=BC?sin∠CBH=,BH=BC?cos∠CBH=.再解Rt△BAH中,求出AH=BH?tan∠ABH=,那么根據(jù)AC=CH-AH計(jì)算即可.詳解:如圖,過點(diǎn)B作BH⊥l交l于點(diǎn)H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,∴CH=BC?sin∠CBH≈,BH=BC?cos∠CBH≈.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,∴AH=BH?tan∠ABH≈,∴AC=CH﹣AH=(km).答:工作人員家到檢查站的距離AC的長(zhǎng)約為km.點(diǎn)睛:本題考查的是解直角三角形的應(yīng)用-方向角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.22、(1),點(diǎn)D的坐標(biāo)為(2,-8)(2)點(diǎn)F的坐標(biāo)為(7,)或(5,)(3)菱形對(duì)角線MN的長(zhǎng)為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點(diǎn)坐標(biāo).(3)分類討論,當(dāng)MN在x軸上方時(shí),在x軸下方時(shí)分別計(jì)算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點(diǎn)D的坐標(biāo)為(2,-8).(2)如圖,當(dāng)點(diǎn)F在x軸上方時(shí),設(shè)點(diǎn)F的坐標(biāo)為(x,).過點(diǎn)F作FG⊥x軸于點(diǎn)G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當(dāng)x=7時(shí),y=,∴點(diǎn)F的坐標(biāo)為(7,).當(dāng)點(diǎn)F在x軸下方時(shí),設(shè)同理求得點(diǎn)F的坐標(biāo)為(5,).綜上所述,點(diǎn)F的坐標(biāo)為(7,)或(5,).(3)∵點(diǎn)P在x軸上,∴根據(jù)菱形的對(duì)稱性可知點(diǎn)P的坐標(biāo)為(2,0).如圖,當(dāng)MN在x軸上方時(shí),設(shè)T為菱形對(duì)角線的交點(diǎn).∵PQ=MN,∴MT=2PT.設(shè)TP=n,則MT=2n.∴M(2+2n,n).∵點(diǎn)M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當(dāng)MN在x軸下方時(shí),設(shè)TP=n,得M(2+2n,-n).∵點(diǎn)M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對(duì)角線MN的長(zhǎng)為或.點(diǎn)睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個(gè)點(diǎn),利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個(gè)交點(diǎn)(,利用雙根式,y=()求二次函數(shù)解析式,而且此時(shí)對(duì)稱軸方程過交點(diǎn)的中點(diǎn),.2.處理直角坐標(biāo)系下,二次函數(shù)與幾何圖形問題:第一步要寫出每個(gè)點(diǎn)的坐標(biāo)(不能寫出來的,可以用字母表示),寫已知點(diǎn)坐標(biāo)的過程中,經(jīng)常要做坐標(biāo)軸的垂線,第二步,利用特殊圖形的性質(zhì)和函數(shù)的性質(zhì),往往是解決問題的鑰匙.23、解:(1)該校班級(jí)個(gè)數(shù)為4÷20%=20(個(gè)),只有2名留守兒童的班級(jí)個(gè)數(shù)為:20﹣(2+3+4+5+4)=2(個(gè)),該校平均每班留守兒童的人數(shù)為:=4(名),補(bǔ)圖如下:(2)由(1)得只有2名留守兒童的班級(jí)有2個(gè),共4名學(xué)生.設(shè)A1,A2來自一個(gè)班,B1,B2來自一個(gè)班,有樹狀圖可知,共有12中等可能的情況,其中來自一個(gè)班的共有4種情況,則所選兩名留守兒童來自同一個(gè)班級(jí)的概率為:=.【解析】(1)首先求出班級(jí)數(shù),然后根據(jù)條形統(tǒng)計(jì)圖求出只有2名留守兒童的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論