2024屆廣西欽州市東場中學中考數(shù)學考試模擬沖刺卷含解析_第1頁
2024屆廣西欽州市東場中學中考數(shù)學考試模擬沖刺卷含解析_第2頁
2024屆廣西欽州市東場中學中考數(shù)學考試模擬沖刺卷含解析_第3頁
2024屆廣西欽州市東場中學中考數(shù)學考試模擬沖刺卷含解析_第4頁
2024屆廣西欽州市東場中學中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆廣西欽州市東場中學中考數(shù)學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關(guān)系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定2.為了增強學生體質(zhì),學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.43.如圖,在△ABC中,點D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.4.點M(1,2)關(guān)于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)5.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.126.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile7.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.8.設x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或59.若M(2,2)和N(b,﹣1﹣n2)是反比例函數(shù)y=的圖象上的兩個點,則一次函數(shù)y=kx+b的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限10.化簡:(a+)(1﹣)的結(jié)果等于()A.a(chǎn)﹣2 B.a(chǎn)+2 C. D.11.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.12.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,在平面直角坐標系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點B、C恰好同時落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.14.函數(shù)y=中,自變量x的取值范圍為_____.15.一個凸多邊形的內(nèi)角和與外角和相等,它是______邊形.16.函數(shù)y=中,自變量x的取值范圍是________.17.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數(shù)的圖象經(jīng)過點B,則k的值是_____.18.如圖,菱形ABCD的邊長為15,sin∠BAC=35三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.20.(6分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.21.(6分)如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.22.(8分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.23.(8分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.24.(10分)如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).求二次函數(shù)的解析式;求函數(shù)圖象的頂點坐標及D點的坐標;二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最???若C點存在,求出C點的坐標;若C點不存在,請說明理由.25.(10分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.26.(12分)在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數(shù),現(xiàn)在只花費了4800元.求每張門票原定的票價;根據(jù)實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.27.(12分)如圖,正方形OABC繞著點O逆時針旋轉(zhuǎn)40°得到正方形ODEF,連接AF,求∠OFA的度數(shù)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)正比例函數(shù)的增減性解答即可.【詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【點睛】本題考查了正比例函數(shù)圖象與系數(shù)的關(guān)系:對于y=kx(k為常數(shù),k≠0),當k>0時,y=kx的圖象經(jīng)過一、三象限,y隨x的增大而增大;當k<0時,y=kx的圖象經(jīng)過二、四象限,y隨x的增大而減小.2、B【解析】

在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.3、C【解析】

根據(jù)平行線分線段成比例定理推理的逆定理,對各選項進行逐一判斷即可.【詳解】A.當時,能判斷;B.

當時,能判斷;C.

當時,不能判斷;D.

當時,,能判斷.故選:C.【點睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應線段是解決此題的關(guān)鍵.4、A【解析】

關(guān)于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變?yōu)橄喾磾?shù).【詳解】點M(1,2)關(guān)于y軸對稱點的坐標為(-1,2)【點睛】本題考查關(guān)于坐標軸對稱的點的坐標特征,牢記關(guān)于坐標軸對稱的點的性質(zhì)是解題的關(guān)鍵.5、B【解析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質(zhì),角平分線上的點到角兩邊的距離相等.6、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.7、B【解析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.8、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.9、C【解析】

把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即根據(jù)k、b的值確定一次函數(shù)y=kx+b的圖象經(jīng)過的象限.【詳解】解:把(2,2)代入,得k=4,把(b,﹣1﹣n2)代入得:k=b(﹣1﹣n2),即,∵k=4>0,<0,∴一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,故選C.【點睛】本題考查了反比例函數(shù)圖象的性質(zhì)以及一次函數(shù)經(jīng)過的象限,根據(jù)反比例函數(shù)的性質(zhì)得出k,b的符號是解題關(guān)鍵.10、B【解析】

解:原式====.故選B.考點:分式的混合運算.11、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點睛】本題考查了三視圖的知識,關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關(guān)鍵.12、C【解析】

根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點睛】本題考查了簡單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設菱形平移后B的坐標是(x,4),C的坐標是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為y=.點睛:本題考查了菱形的性質(zhì),用待定系數(shù)法求反比例函數(shù)的解析式,平移的性質(zhì)的應用,主要考查學生的計算能力.14、x≠1.【解析】

該函數(shù)是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【詳解】根據(jù)題意得:x?1≠0,解得:x≠1.故答案為x≠1.【點睛】本題考查了函數(shù)自變量的取值范圍,解題的關(guān)鍵是熟練的掌握分式的意義.15、四【解析】

任何多邊形的外角和是360度,因而這個多邊形的內(nèi)角和是360度.n邊形的內(nèi)角和是(n-2)?180°,如果已知多邊形的內(nèi)角和,就可以得到一個關(guān)于邊數(shù)的方程,解方程就可以求出多邊形的邊數(shù).【詳解】解:設邊數(shù)為n,根據(jù)題意,得(n-2)?180=360,解得n=4,則它是四邊形.故填:四.【點睛】此題主要考查已知多邊形的內(nèi)角和求邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.16、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關(guān)鍵.17、.【解析】

已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質(zhì)可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據(jù)勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數(shù)的解析式中,即可求出k的值.【詳解】過點B作BC垂直O(jiān)A于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【點睛】考查待定系數(shù)法確定反比例函數(shù)的解析式,只需求出反比例函數(shù)圖象上一點的坐標;18、24【解析】試題分析:因為四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可知,BD與AC互相垂直且平分,因為sin∠BAC=35,AB=10,所以1考點:三角函數(shù)、菱形的性質(zhì)及勾股定理;三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)25π;(2)CD1=,CD2=7【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質(zhì)等知識.利用分類討論思想并合理構(gòu)造輔助線是解題的關(guān)鍵.20、(1);(2).【解析】

(1)將(-1,0)和(0,3)兩點代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;

(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個交點的坐標,進而求出當函數(shù)值y>0時,自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過和兩點,得,解這個方程組,得,拋物線的解析式為,(2)令,得.解這個方程,得,.∴此二次函數(shù)的圖象與軸的另一個交點的坐標為.當時,.【點睛】本題考查的知識點是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點,解題的關(guān)鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點.21、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應將邊長進行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(-4,0)22、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質(zhì)進行對應邊的轉(zhuǎn)化.23、(1)BC=BD+CE,(2);(3).【解析】

(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結(jié)論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點睛】考查全等三角形的判定與性質(zhì),勾股定理,二元一次方程組的應用,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.24、(1)y=x1﹣4x+6;(1)D點的坐標為(6,0);(3)存在.當點C的坐標為(4,1)時,△CBD的周長最小【解析】

(1)只需運用待定系數(shù)法就可求出二次函數(shù)的解析式;(1)只需運用配方法就可求出拋物線的頂點坐標,只需令y=0就可求出點D的坐標;(3)連接CA,由于BD是定值,使得△CBD的周長最小,只需CD+CB最小,根據(jù)拋物線是軸對稱圖形可得CA=CD,只需CA+CB最小,根據(jù)“兩點之間,線段最短”可得:當點A、C、B三點共線時,CA+CB最小,只需用待定系數(shù)法求出直線AB的解析式,就可得到點C的坐標.【詳解】(1)把A(1,0),B(8,6)代入,得解得:∴二次函數(shù)的解析式為;(1)由,得二次函數(shù)圖象的頂點坐標為(4,﹣1).令y=0,得,解得:x1=1,x1=6,∴D點的坐標為(6,0);(3)二次函數(shù)的對稱軸上存在一點C,使得的周長最?。B接CA,如圖,∵點C在二次函數(shù)的對稱軸x=4上,∴xC=4,CA=CD,∴的周長=CD+CB+BD=CA+CB+BD,根據(jù)“兩點之間,線段最短”,可得當點A、C、B三點共線時,CA+CB最小,此時,由于BD是定值,因此的周長最?。O直線AB的解析式為y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:∴直線AB的解析式為y=x﹣1.當x=4時,y=4﹣1=1,∴當二次函數(shù)的對稱軸上點C的坐標為(4,1)時,的周長最小.【點睛】本題考查了(1)二次函數(shù)綜合題;(1)待定系數(shù)法求一次函數(shù)解析式;(3)二次函數(shù)的性質(zhì);(4)待定系數(shù)法求二次函數(shù)解析式;(5)線段的性質(zhì):(6)兩點之間線段最短.25、(1)證明見解析;(2)陰影部分的面積為.【解析】

(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論