版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年安徽省臨泉中考考前最后一卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.52.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°3.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°4.如圖,數(shù)軸A、B上兩點分別對應實數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+5.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數(shù)可能是()A.44 B.45 C.46 D.476.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合7.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.38.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是()A.袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過99.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.510.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(
)A.16cm B.18cm C.20cm D.21cm二、填空題(本大題共6個小題,每小題3分,共18分)11.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.12.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數(shù)為.
13.因式分解:x2﹣4=.14.4是_____的算術(shù)平方根.15.如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點M與圓心O重合,則圖中陰影部分的面積是________.16.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.18.(8分)在?ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求?ABCD的面積.19.(8分)(1)計算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式組,并把它的解集在數(shù)軸上表示出來.20.(8分)如圖,A,B,C三個糧倉的位置如圖所示,A糧倉在B糧倉北偏東26°,180千米處;C糧倉在B糧倉的正東方,A糧倉的正南方.已知A,B兩個糧倉原有存糧共450噸,根據(jù)災情需要,現(xiàn)從A糧倉運出該糧倉存糧的支援C糧倉,從B糧倉運出該糧倉存糧的支援C糧倉,這時A,B兩處糧倉的存糧噸數(shù)相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B兩處糧倉原有存糧各多少噸?(2)C糧倉至少需要支援200噸糧食,問此調(diào)撥計劃能滿足C糧倉的需求嗎?(3)由于氣象條件惡劣,從B處出發(fā)到C處的車隊來回都限速以每小時35公里的速度勻速行駛,而司機小王的汽車油箱的油量最多可行駛4小時,那么小王在途中是否需要加油才能安全的回到B地?請你說明理由.21.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22.(10分)平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.(1)設(shè)a=2,點B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;(3)設(shè)m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.23.(12分)數(shù)學興趣小組為了研究中小學男生身高y(cm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計的中小學男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標系中描出了表中數(shù)據(jù)對應的點,并發(fā)現(xiàn)前5個點大致位于直線AB上,后7個點大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學生的平均身高從歲開始增加特別迅速.(2)求直線AB所對應的函數(shù)表達式.(3)直接寫出直線CD所對應的函數(shù)表達式,假設(shè)17歲后該市男生身高增長速度大致符合直線CD所對應的函數(shù)關(guān)系,請你預測該市18歲男生年齡組的平均身高大約是多少?24.已知,如圖,是的平分線,,點在上,,,垂足分別是、.試說明:.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個,往第3排中間正方體上添加2個、右側(cè)兩個正方體上再添加1個,即一共添加4個小正方體,故選C.2、C【解析】
這個扇形的圓心角的度數(shù)為n°,根據(jù)弧長公式得到20π=,然后解方程即可.【詳解】解:設(shè)這個扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).3、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內(nèi)角互補.解決問題的關(guān)鍵是作平行線.4、C【解析】
本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數(shù)與數(shù)軸的對應關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).5、A【解析】
連接正方形的對角線,然后依據(jù)正方形的性質(zhì)進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點睛】本題主要考查的是正方形的性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.6、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.7、D【解析】設(shè)△OAC和△BAD的直角邊長分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點B的坐標,根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結(jié)論.
解:設(shè)△OAC和△BAD的直角邊長分別為a、b,
則點B的坐標為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關(guān)鍵是找出a2﹣b2的值.解決該題型題目時,要設(shè)出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關(guān)鍵.8、D【解析】
根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、A【解析】
先利用直角三角形的性質(zhì)求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質(zhì)和中位線定理,解題關(guān)鍵是尋找EF與題目已知長度的線段的數(shù)量關(guān)系.10、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據(jù)平移的性質(zhì)得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點:平移的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】先設(shè)點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.12、65°【解析】
根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,根據(jù)角平分線的性質(zhì)解答即可.【詳解】根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個銳角互余);
故答案是:65°.13、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法14、16.【解析】試題解析:∵42=16,∴4是16的算術(shù)平方根.考點:算術(shù)平方根.15、.【解析】試題解析:如圖,連接OM交AB于點C,連接OA、OB,由題意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=,AC=∴∠AOC=60°,AB=2AC=2,∴∠AOB=2∠AOC=120°,則S弓形ABM=S扇形OAB-S△AOB==,S陰影=S半圓-2S弓形ABM=π×22-2()=2.故答案為2.16、【解析】
利用P(A)=,進行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應用求概率的公式.三、解答題(共8題,共72分)17、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】
(1)將的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;
(2)根據(jù)的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據(jù)平行四邊形的性質(zhì),得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設(shè)直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設(shè)當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,
∵C(0,-3)
∴設(shè)P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,
∵C(0,-3)
∴設(shè)P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此時存在點P2(,3)和P3(,3),
綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)、二次函數(shù)的應用等知識,綜合性強,難度較大.18、(1)證明見解析(2)3【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可證DF∥EB,然后根據(jù)一組對邊平行且相等的四邊形為平行四邊形可證四邊形DEBF是平行四邊形,然后根據(jù)有一個角是直角的平行四邊形是矩形可證;(2)根據(jù)(1)可知DE=BF,然后根據(jù)勾股定理可求AD的長,然后根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)可求得DF=AD,然后可求CD的長,最后可用平行四邊形的面積公式可求解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四邊形DEBF是平行四邊形.∵DE⊥AB,∴∠EDB=90°.∴四邊形DEBF是矩形.(2)∵四邊形DEBF是矩形,∴DE=BF=4,BD=DF.∵DE⊥AB,∴AD===1.∵DC∥AB,∴∠DFA=∠FAB.∵AF平分∠DAB,∴∠DAF=∠FAB.∴∠DAF=∠DFA.∴DF=AD=1.∴BE=1.∴AB=AE+BE=3+1=2.∴S□ABCD=AB·BF=2×4=3.19、(1)5;(2)﹣2≤x<﹣.【解析】
(1)原式第一項利用乘方的意義計算,第二項利用特殊角的三角函數(shù)值以及二次根式的乘法計算,第三項利用負整數(shù)指數(shù)冪法則計算,最后一項利用零指數(shù)冪法則計算,然后根據(jù)實數(shù)的運算法則計算即可得到結(jié)果;(2)先求出兩個不等式的解集,再找出解集的公共部分即可.【詳解】(1)原式=5;(2)解不等式①得,x≥﹣2,解不等式②得,所以不等式組的解集是用數(shù)軸表示為:【點睛】本題考查了實數(shù)的混合運算,特殊角的三角函數(shù)值,負整數(shù)指數(shù)冪,零指數(shù)冪,不等式組的解法,是綜合題,但難度不大,計算時要注意運算符號的處理以及解集公共部分的確定.20、(1)A、B兩處糧倉原有存糧分別是270,1噸;(2)此次調(diào)撥能滿足C糧倉需求;(3)小王途中須加油才能安全回到B地.【解析】
(1)由題意可知要求A,B兩處糧倉原有存糧各多少噸需找等量關(guān)系,即A處存糧+B處存糧=450噸,A處存糧的五分之二=B處存糧的五分之三,據(jù)等量關(guān)系列方程組求解即可;(2)分別求出A處和B處支援C處的糧食,將其加起來與200噸比較即可;(3)由題意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的長,可以運用三角函數(shù)解直角三角形.【詳解】(1)設(shè)A,B兩處糧倉原有存糧x,y噸根據(jù)題意得:解得:x=270,y=1.答:A,B兩處糧倉原有存糧分別是270,1噸.(2)A糧倉支援C糧倉的糧食是×270=162(噸),B糧倉支援C糧倉的糧食是×1=72(噸),A,B兩糧倉合計共支援C糧倉糧食為162+72=234(噸).∵234>200,∴此次調(diào)撥能滿足C糧倉需求.(3)如圖,根據(jù)題意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=,∴BC=AB?sin∠BAC=1×0.44=79.2.∵此車最多可行駛4×35=140(千米)<2×79.2,∴小王途中須加油才能安全回到B地.【點睛】求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.21、觀景亭D到南濱河路AC的距離約為248米.【解析】
過點D作DE⊥AC,垂足為E,設(shè)BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設(shè)BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.22、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解析】分析:(1)由已知代入點坐標即可;(2)面積問題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問題可解;(3)設(shè)出點A、A′坐標,依次表示AD、AF及點P坐標.詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標為(2,4),A′坐標為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學《園藝植物育種學》2022-2023學年第一學期期末試卷
- 語文情景劇主持詞
- 石河子大學《農(nóng)村公共管理》2022-2023學年第一學期期末試卷
- 石河子大學《國際貿(mào)易實務(wù)》2022-2023學年第一學期期末試卷
- 沈陽理工大學《體驗型交互設(shè)計》2023-2024學年第一學期期末試卷
- 沈陽理工大學《模擬電子技術(shù)》2022-2023學年期末試卷
- 沈陽理工大學《機械原理》2022-2023學年第一學期期末試卷
- 關(guān)于山林看護合同
- 國外采購合同
- 合同把關(guān)管理要求
- 《Unit 10 You're supposed to shake hands》單元檢測題及答案
- (高清版)DZT 0073-2016 電阻率剖面法技術(shù)規(guī)程
- 中考英語一模作文-征集“文化自信類”寫作
- 門面招租方案
- 稅務(wù)學習練兵(辦公室條線)考試題庫(含答案)
- 食堂安全隱患及防范措施
- 新生兒肛管排氣
- 經(jīng)濟思想史知識點總匯
- 護理安全質(zhì)控總結(jié)分析報告
- 2024年核苷酸二鈉(I+G)行業(yè)分析報告及未來發(fā)展趨勢
- 養(yǎng)老行業(yè)發(fā)展趨勢與前景展望
評論
0/150
提交評論