




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
July2022
TITLE
doc.:IEEE802.11-22/0987r
21
Submission page
PAGE
3
XiaofeiWang(InterDigitalInc.)
IEEEP802.11
WirelessLANs
IEEE802.11AIMLTIGTechnicalReportDraft
Date:2022-07-06
Author(s):
Name
Affiliation
Address
Phone
XiaofeiWang
InterDigitalInc.
111West33rdStreet
NewYork,NY10120
USA
+1-607-592-2727
Xiaofei.wang@
MingGan
Huawei
Ming.gan@
ZinanLin
InterDigital
RuiYang
InterDigital
AiguoYan
Zeku
JunghoonSuh
Huawei
ZiyangGuo
Huawei
MarcoHernadez
NICT
LiangxiaoXin
Zeku
Abstract
ThisdocumentcontainsthetechnicalreportoftheIEEE802.11AIMLTIG.
R0:initialoutline
R1:insertionofUsecase1
R2:insertionofIntroduction
TableofContents
Introduction
Terminologies
AIML ArtificialIntelligence/MachineLearning
CSI ChannelStateInformation
UHR UltraHighReliability
Backgroundinformation
ArtificialIntelligence/MachineLearning(AI/ML)algorithmshavemadesignificantprogressandarebeingappliedinmanydomains,includingmedicaldiagnosis,speechrecognition,computervision,andintegrationofvisionandcontrolforrobotics.Inaddition,AI/MLalgorithmsareemergingasimportantcomponentsinmanyapplicationssuchasautonomousdriving,languagetranslationandhuman-machineinteractions.
TraditionalAI/MLtechniquesarebasedonacentralizedmodelwhichrequiresexchangingalargeamountofdatabetweendatasourcesandacentralizedserver.Morerecently,distributedAI/MLalgorithmssuchasfederatedlearninghavebeendevelopedthatwillallowmoreanalysisatthesourceandreducetheamountofdatathatneedtobeexchanged,thoughtheexpectedamountofexchangeddataremainssignificant.Withtheprevalenceofwirelessnetworksandcommunications,muchoftheexchangeddataisexpectedtobecarriedthroughwirelessnetworks,suchasIEEE802.11WLANnetworks.
StudieshaveshownthatAI/MLalgorithmscanhelpimprovetheperformanceforwirelesscommunicationnetworks,byprovidingbetterresourceusage,lowerenergyconsumption,higherreliabilityandmorerobustnesstoachangingenvironment.Asthesealgorithmsbecomemorematureandcosteffective,WLANmayleverageAI/MLforenhancednetworkperformanceanduserexperience.
InMay2022,theIEEE802.11WorkingGroup(WG)hasapprovedtheformingoftheAIMLTaskInterestGroup(TIG)bythefollowingmotion[1]:
Motion5:TIGRe:AI/MLusein802.11
ApproveformationofaTopicInterestGroup(TIG)to:
(a)describeusecasesforArtificialIntelligence/MachineLearning(AI/ML)applicabilityin802.11systemsand
(b)investigatethetechnicalfeasibilityoffeaturesenablingsupportofAI/ML.
TheTIGistocompleteareportonthistopicatorbeforetheMarch2023session.
ThistechnicalreportisthefinalreportoftheAIMLTIGtotheIEEE802.11WGdetailingvariousAIMLusecasesdiscussedduringtheAIMLTIG.Foreachusecase,anumberofKeyPerformanceIndicators(KPIs)havebeenidentifiedandrequirementsandtechnicalfeasibilityanalysishavebeenprovided.
AIMLUsecasesforIEEE802.11
Note:usecasespotentiallycanbeorganizedintodifferentcategories
Note:usecasespotentiallycanidentifyKPIs
Usecase1:CSIfeedbackcompression
In802.11ax[1]andthedraftof802.11be[2],theAPinitiatesthesoundingsequencebytransmittingtheNDPAframefollowedbyaNDPwhichisusedforthegenerationofVmatrixatthebeamformee.UponthereceiptoftheNDPfromthebeamformer,thebeamforeeappliesacompressionscheme(i.e.,Givensrotations)ontheVmatrixandfeedsbacktheangelesinthebeamformingreportframe.
Itisindicatedin
REF_Ref118889474\r\h
[4][3]
thathighernumberofspatialstreamshasbeenaninevitabletrendinWiFiformorethanadecade.Theprelimilaryresults
REF_Ref118889474\r\h
[4][3]
REF_Ref118889476\r\h
[5][4]
REF_Ref118889495\r\h
[6][5]
showthatMIMOwithalargenumbertransmitterantennasandalargenumberofspatialstreams(e.g.,16spatialstreams)offerremarkablesystemperformancegainsonbothSU-MIMOandMU-MIMOcases.MultiAP(MAP)maybeonepotentialfeatureinthenext802.11generation,e.g.UHR
REF_Ref118797206\r\h
[7][6]
-
REF_Ref118796138\r\h
[10][9]
.LargenumberofspatialstreamscombinedwithMAPfeaturemayfurtherincreasethesoundingfeedbackairtimeoverheadifcoordinationbetweenAPs(e.g.,jointtransmission/reception,coordinatedbeamforming)isapplied.Largeamountofoverheadorprolongedsoundingproceduresmaynegativelyimpactthelatencyandlimitthesystemperformance.Therefore,thereisaneedtoreducetheCSIoverheadespeciallywhenthenumberoftransmitterantennasgoeshigherormultipleAPsperformjointorcoordinatedtransmission.
Somestudies(e.g.,
REF_Ref118797710\r\h
[11][10]
REF_Ref118797712\r\h
[12][11]
REF_Ref118983623\r\h
[13][12]
REF_Ref118988666\r\h
[14][13]
)haveshownthatAI/MLcanefficientlyreducetheCSIfeedbackandimprovethesystemthroughput.Forexample,motivatedbythenaturethattheCSImayfallintodifferentclustersduetothechannelsimilarityofnearbySTAs,iFORalgorithm
REF_Ref118797710\r\h
[11][10]
appliestheunsupervisedlearning,K-mean,totheCSIcompressiontoclassifytheanglevectorswhicharederivedfromVmatrix.Simulationresultsshowthatfora8x2SU-MIMO,iFORusesaround8%ofthenumberofbitsrequiredbytheexistingfeedbackmechanism(802.11ax)andboostthesystemthroughputbyupto52%.In
REF_Ref118797712\r\h
[12][11]
,anotherunsupervisedlearning,DeepNeuralNetworkAutoencoder(DNN-AE)isappliedtoCSIanglevectorsandfurthercompressesthederivedangles(LB-SciFi)byleveraingthecompressioncapabilityofDNNs.ExperimentalresultsshowthatLB-SciFireducesthefeedbackoverheadby73%andincreasesthenetworkthroughputby69%onaverage.
ThisusecaseproposestoapplyAI/MLtechniquetoCSIfeedbackschemestoreducetheCSIoverheadwithminimumlossofPERperformance.
KPIsconsideredinthisusecaseareproposedasfollows:
Numberoffeedbackbitspersubcarriergroup
AchievedPER
BothSU-MIMOandMU-MIMOcasesneedtobeconsidered
AdditionalAIMLoverheadcompredwithcompressionsaving
OneexampleistheratiobetweenthenumberofadditionalbitsrequiredbyAIMLprocess(includingdatausedformodeltraining/inference
REF_Ref119303357\r\h
[15][14]
themodelparameters,theadditionalsignaling)andthenumberofbitssavedbytheCSIfeedbackscheme.Inthisexample,ifthedatausedformodeltrainingthatisperformedbytheAPfullyreliesonthelegacyCSIreport,thentheadditionalAIMLusedformodeltraining/inferencemaybe0.
Computationcomplexity/Latency:
AdditionaldelayorcomputationisintroducedbyAIMLprocessing
Eveluationmethodologyneedstobeestablished.
Usecase2
UsecaseN
RequirementsandPotentialfeaturesanalysis(highlevel)
Requirements
RequirementsUsecase1:CSIfeedbackcompression
Performanceshouldfollowtheguidiancebelow:
CSIairtimereduction:achievearitimereductionofCSIfeedbackover802.11beforagivenNrxNcMIMO,whereNristhenumberofrowsinthecompressedbeamformingfeeedbackmatrix,Ncisthenumberofcolumnsinthecompressedbeamformingfeedbackmatrix.
AdditionaloverheadusedforAIMLprocess:minimizetheadditionaloverheadusedforAIMLprocess.AdditionaloverheadmayincludethedatausedforAIMLmodeltraining/inference[14],themodelparametersandadditionalsignalling.ThedatausedforAIMLmodeltraining/inference[14]canreusethelegecyCSIreportdata.
PacketErrorrate(PER):guaranteeminimumSNRlosscomparedwith802.11betoachievethetargetPER(e.g.,1%and/or10%)atagivenMCSinalltypesofchannels
REF_Ref119303329\r\h
[16][15]
.
Computationcomplexity/Latency:minimizetheadditionalcomputationcomplexityorlatencyrequiredbytheAIMLprocess
Potentialfeaturesanalysis
Technicalfeasibilityanalysis
Standardsimpact
UsecaseofCSIfeedbackcompression
Thestandardimpactmayinclude:
Additionalsignaling(e.g.,betweenAPandnon-APSTAs)requiredbyAIMLprocessPlaceholderforadditionaltechnicalfeasibilityanalysis
Technicalfeasibility
UsecaseofCSIfeedbackcompression
Thefollowingmetricswillbestudied:
Dataavailabilityandaccesibility:TherearesomeSTAsthatareabletousethedatatoperformAIMLmodeltrainingand/orinference
REF_Ref119086275\r\h
[15][14]
.Thedatausedformodeltrainingand/orinferenceshallbeaccessiblefortheseSTAs.
AP/edgecomputingbasedAIML:Datamaybecollectedfromnon-APSTAs.Thelegeacy802.11CSIreportsmaybeusedastrainingdata.
DevicecomputingbasedAIML:DatashouldbeavailableatallSTAsthatsupportAIMLprocess.
Hardware/softwarecapability:TheSTAsthatuseAIMLtogeneratetheAIMLenabledCSIfeedbackcompressionshallhavethehardwareandsoftwarecapabilitytosupportAIMLalgorithm(s).
AP/edgecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:Extradataandmodel(e.g.,modelparameters)exchangemayberequiredtosupportAP/edgecomputingbasedAIML.However,computationisnotexpectedtobelocatedatAPoredgecomputingresourcesforwhichhighercomputationcapabilitiesisexpected.
DevicecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:STAsthatsupportAIMLmayberequiredtohaveextracomputationcapability.Extradataandmodel(e.g.,modelparameters)exchangebetweenSTAsmayalsoberequiredtosupportdevicecomputingbasedAIML.
Summary
References
11-22/597r3:May2022WorkingGroupMotions,May18,2022
IEEE802.11-REVmeD2.0,October2022
IEEEP802.11beD2.2,October2022
802.11-18/0818r3,16SpatialStreamSupportinNextGenerationWLAN
802.11-20/1877r1,16SpatialStreamSupport
802.11-20/1535r66,CompendiumofstrawpollsandpotentialchangestotheSpecificationFrameworkDocumentPart2
802.11-22/1515,Acandidatefeature:M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中化學試題人教版2019選擇性必修1第三章水溶液中的離子反應與平衡(B卷能力提升練)-【單元測試】含解析
- 考研復習-風景園林基礎考研試題帶答案詳解(完整版)
- 2024年山東華興機械集團有限責任公司人員招聘筆試備考題庫附答案詳解(基礎題)
- 2024年濱州新能源集團有限責任公司及權屬公司公開招聘工作人員遞補筆試備考題庫附答案詳解(滿分必刷)
- 2023國家能源投資集團有限責任公司第一批社會招聘筆試備考試題及答案詳解(有一套)
- 2025年Z世代消費趨勢與品牌創(chuàng)新營銷模式案例研究報告
- 重慶國際醫(yī)院管道技術改造施工組織設計
- 2025年K2學校STEM課程實施效果對學生未來領導力的提升評估報告
- 2026年高考物理大一輪復習講義 第十六章 第85課時 原子核
- 統(tǒng)編版三年級語文下冊《第一單元習作:我的植物朋友》課件
- rg-wall1600系列下一代防火墻命令手冊
- (人教版教材)初中地理《巴西》完整版
- 噴淋系統(tǒng)調試報告doc
- 科研經費審計報告模板
- DB4416∕T 5-2021 地理標志產品 河源米粉
- 雨季監(jiān)理實施細則
- MW機組擴建工程常熟施工組織設計
- 課件:基礎生命支持
- 分層審核檢查表LPA全套案例
- 柔版印刷常見故障及解決辦法
- 三標一體文件編寫指南
評論
0/150
提交評論